已知: 、 两点在直线 的同一侧,线段 , 均是直线 的垂线段,且 在 的右边, ,将 沿直线 向右平移,在平移过程中,始终保持 不变, 边与直线 相交于点 .
(1)当 与 重合时(如图2所示),设点 是 的中点,连接 .求证:四边形 是正方形;
(2)请利用如图1所示的情形,求证: ;
(3)若 ,且当 时,请直接写出 和 的长.
发现规律
(1)如图①, 与 都是等边三角形,直线 , 交于点 .直线 , 交于点 .求 的度数.
(2)已知: 与 的位置如图②所示,直线 , 交于点 .直线 , 交于点 .若 , ,求 的度数.
应用结论
(3)如图③,在平面直角坐标系中,点 的坐标为 ,点 的坐标为 , 为 轴上一动点,连接 .将线段 绕点 逆时针旋转 得到线段 ,连接 , .求线段 长度的最小值.
定义:点 是 内部或边上的点(顶点除外),在 , , 中,若至少有一个三角形与 相似,则称点 是 的自相似点.
例如:如图1,点 在 的内部, , ,则 ,故点 是 的自相似点.
请你运用所学知识,结合上述材料,解决下列问题:
在平面直角坐标系中,点 是曲线 上的任意一点,点 是 轴正半轴上的任意一点.
(1)如图2,点 是 上一点, ,试说明点 是 的自相似点;当点 的坐标是 , ,点 的坐标是 , 时,求点 的坐标;
(2)如图3,当点 的坐标是 ,点 的坐标是 时,求 的自相似点的坐标;
(3)是否存在点 和点 ,使 无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.
如图, 是 的弦, ,点 是 上的一个动点,且 ,若点 , 分别是 , 的中点,则图中阴影部分面积的最大值是 .
如图,抛物线 经过点 ,点 ,作 轴交抛物线于点 ,作 轴,垂足为 ,动点 从点 出发在线段 上以每秒2个单位长度的速度向点 运动,同时动点 从点 出发在线段 上以每秒1个单位长度的速度向点 运动,当一个点到达终点时,另一个点也随之停止运动,设运动时间为 秒.
(1)求抛物线的解析式;
(2)设 的面积为 ,求 与 的函数关系式;
(3)①当 时,直接写出 的值;
②在点 和点 运动过程中,是否存在某一时刻,使 ?若存在,直接写出此时 的值;若不存在,请说明理由.
如图,在四边形 中, , , 分别平分 , ,并交线段 , 于点 , (点 , 不重合).在线段 上取点 , (点 在 之间),使 .当点 从点 匀速运动到点 时,点 恰好从点 匀速运动到点 .记 , ,已知 ,当 为 中点时, .
(1)判断 与 的位置关系,并说明理由.
(2)求 , 的长.
(3)若 .
①当 时,通过计算比较 与 的大小关系.
②连结 ,当 所在直线经过四边形 的一个顶点时,求所有满足条件的 的值.
如图,已知抛物线 经过 的三个顶点,其中点 ,点 , 轴,点 是直线 下方抛物线上的动点.
(1)求抛物线的解析式;
(2)过点 且与 轴平行的直线 与直线 、 分别交于点 、 ,当四边形 的面积最大时,求点 的坐标;
(3)当点 为抛物线的顶点时,在直线 上是否存在点 ,使得以 、 、 为顶点的三角形与 相似,若存在,求出点 的坐标,若不存在,请说明理由.
如图,在边长为4的正方形 中,点 是 的中点,点 在 上,且 , , 相交于点 ,则 的面积是 .
如图1,点 是半圆 的直径 上一动点(不包括端点), ,过点 作 交半圆于点 ,连结 ,过点 作 交半圆于点 ,连结 .牛牛想探究在点 运动过程中 与 的大小关系.他根据学习函数的经验,记 , , .请你一起参与探究函数 、 随自变量 变化的规律.
通过几何画板取点、画图、测量,得出如下几组对应值,并在图2中描出了以各对对应值为坐标的点,画出了不完整图象.
|
|
0.30 |
0.80 |
1.60 |
2.40 |
3.20 |
4.00 |
4.80 |
5.60 |
|
|
|
2.01 |
2.98 |
3.46 |
3.33 |
2.83 |
2.11 |
1.27 |
0.38 |
|
|
|
5.60 |
4.95 |
3.95 |
2.96 |
2.06 |
1.24 |
0.57 |
0.10 |
|
(1)当 时, .
(2)在图2中画出函数 的图象,并结合图象判断函数值 与 的大小关系.
(3)由(2)知" 取某值时,有 ".如图3,牛牛连结了 ,尝试通过计算 , 的长来验证这一结论,请你完成计算过程.
如图,在矩形 中,点 在边 上, 与 关于直线 对称,点 的对称点 在边 上, 为 中点,连结 分别与 , 交于 , 两点.若 , ,则 的长为 , 的值为 .
如图,点 在以 为直径的 上,过 作 的切线交 延长线于点 , 于点 ,交 于点 ,连接 , .
(1)求证: ;
(2)求证: ;
(3)若 , ,求 的长.
如图, 是 的内接三角形,过点 作 的切线交 的延长线于点 , 是 的直径,连接 .
(1)求证: ;
(2)若 , 于点 , , ,求 的值.
如图,在锐角三角形 中, 是 边上的高,以 为直径的 交 于点 ,交 于点 ,过点 作 ,垂足为 ,交 于点 ,交 于点 ,连接 , , .
(1)求证: ;
(2)若 , , ,求 的长.
如图, 是 的外接圆, 是 的直径, 于点 .
(1)求证: ;
(2)连接 并延长,交 于点 ,交 于点 ,连接 .若 的半径为5, ,求 和 的长.