如图1,点在线段上,,,,.
(1)点到直线的距离是 ;
(2)固定,将绕点按顺时针方向旋转,使得与重合,并停止旋转.
①请你在图1中用直尺和圆规画出线段经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法).该图形的面积为 ;
②如图2,在旋转过程中,线段与交于点,当时,求的长.
如图, 内接于 , 是 的直径.直线 与 相切于点 ,在 上取一点 使得 ,线段 , 的延长线交于点 .
(1)求证:直线 是 的切线;
(2)若 , ,求图中阴影部分的面积(结果保留 .
如图, 是 的直径, , 是 上两点,且 ,连接 , .过点 作 交 的延长线于点 .
(1)判定直线 与 的位置关系,并说明理由;
(2)若 , ,求图中阴影部分的面积.
如图,是的直径,点是上一点(与点,不重合),过点作直线,使得.
(1)求证:直线是的切线.
(2)过点作于点,交于点,若的半径为2,,求图中阴影部分的面积.
如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,的三个顶点、、均在格点上.
(1)将向左平移5个单位得到△,并写出点的坐标;
(2)画出△绕点顺时针旋转后得到的△,并写出点的坐标;
(3)在(2)的条件下,求△在旋转过程中扫过的面积(结果保留.
如图,在中,,平分交于点,点在上,以点为圆心,为半径的圆恰好经过点,分别交、于点、.
(1)试判断直线与的位置关系,并说明理由;
(2)若,,求阴影部分的面积(结果保留.
如图,点是线段上一点,,以点为圆心,的长为半径作,过点作的垂线交于,两点,点在线段的延长线上,连接交于点,以,为边作.
(1)求证:是的切线;
(2)若,求四边形与重叠部分的面积;
(3)若,,连接,求和的长.
已知是的直径,和是的两条切线,与相切于点,分别交、于、两点.
(1)如图1,求证:;
(2)如图2,连接并延长交于点,连接.若,,求图中阴影部分的面积.
如图,为的直径,且,点是上的一动点(不与,重合),过点作的切线交的延长线于点,点是的中点,连接.
(1)求证:是的切线;
(2)当时,求阴影部分面积.
如图,在等腰中,,是的角平分线,且,以点为圆心,长为半径画弧,交于点,交于点.
(1)求由弧及线段、、围成图形(图中阴影部分)的面积;
(2)将阴影部分剪掉,余下扇形,将扇形围成一个圆锥的侧面,与正好重合,圆锥侧面无重叠,求这个圆锥的高.
如图,点、、在半径为8的上,过点作,交延长线于点.连接,且.
(1)求证:是的切线;
(2)求图中阴影部分的面积.
如图,在中,,的平分线交于点,点在上,以为直径的经过点.
(1)求证:①是的切线;
②;
(2)若点是劣弧的中点,且,试求阴影部分的面积.
如图,是的直径,点是延长线上的一点,点在上,且,.
(1)求证:是的切线;
(2)若的半径为3,求图中阴影部分的面积.
如图,,点、分别在射线、上,,.
(1)用尺规在图中作一段劣弧,使得它在、两点分别与射线和相切.要求:写出作法,并保留作图痕迹;
(2)根据(1)的作法,结合已有条件,请写出已知和求证,并证明;
(3)求所得的劣弧与线段、围成的封闭图形的面积.