初中数学

如图,在 ΔABC 中, CA = CB BC A 相切于点 D ,过点 A AC 的垂线交 CB 的延长线于点 E ,交 A 于点 F ,连结 BF

(1)求证: BF A 的切线.

(2)若 BE = 5 AC = 20 ,求 EF 的长.

来源:2021年浙江省衢州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,已知点 C 是以 AB 为直径的半圆上一点, D AB 延长线上一点,过点 D BD 的垂线交 AC 的延长线于点 E ,连结 CD ,且 CD = ED

(1)求证: CD O 的切线;

(2)若 tan DCE = 2 BD = 1 ,求 O 的半径.

来源:2021年四川省乐山市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,过点 A O 的切线 AC ,点 P 是射线 AC 上的动点,连接 OP ,过点 B BD / / OP ,交 O 于点 D ,连接 PD

(1)求证: PD O 的切线;

(2)当四边形 POBD 是平行四边形时,求 APO 的度数.

来源:2021年内蒙古通辽市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的圆”,请研究如下美丽的圆,如图, Rt ABC 中, BCA 90 ° AC 3 BC 4 ,点O在线段 BC 上,且 OC = 3 2 ,以O为圆心. OC 为半径的 O 交线段AO于点D,交线段AO的延长线于点E

(1)求证: AB O 的切线;

(2)研究过短中,小明同学发现 AC AE = AD AC ,回答小明同学发现的结论是否正确?如果正确,给出证明;如果不正确,说明理由.

来源:2020年贵州省黔南州中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 Rt AOB 中, AOB 90 ° OA OB ,点C AB 的中点,以OC为半径作 O

(1)求证: AB O 的切线;

(2)若 OC 2 ,求 OA 的长.

来源:2020年甘肃省兰州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ,以 AB 为直径的 O 分别交 AC BC 于点 D E ,点 F AC 的延长线上,且 BAC = 2 CBF

(1)求证: BF O 的切线;

(2)若 O 的直径为4, CF = 6 ,求 tan CBF

来源:2020年山东省枣庄市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = BC ,以 ΔABC 的边 AB 为直径作 O ,交 AC 于点 D ,过点 D DE BC ,垂足为点 E

(1)试证明 DE O 的切线;

(2)若 O 的半径为5, AC = 6 10 ,求此时 DE 的长.

来源:2020年山东省聊城市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,点 C 在以 AB 为直径的 O 上,点 D 是半圆 AB 的中点,连接 AC BC AD BD .过点 D DH / / AB CB 的延长线于点 H

(1)求证:直线 DH O 的切线;

(2)若 AB = 10 BC = 6 ,求 AD BH 的长.

来源:2020年山东省德州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, AM BN 是它的两条切线,过 O 上一点 E 作直线 DC ,分别交 AM BN 于点 D C ,且 DA = DE

(1)求证:直线 CD O 的切线;

(2)求证: O A 2 = DE · CE

来源:2020年山东省滨州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图, AB O 相切于点 B AO O 于点 C AO 的延长线交 O 于点 D E BCD ̂ 上不与 B D 重合的点, sin A = 1 2

(1)求 BED 的大小;

(2)若 O 的半径为3,点 F AB 的延长线上,且 BF = 3 3 ,求证: DF O 相切.

来源:2020年福建省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, C O 上一点, AD CE ,垂足为 D AC 平分 DAB

(1)求证: CE O 的切线;

(2)若 AD = 4 cos CAB = 4 5 ,求 AB 的长.

来源:2020年云南省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, C O 上一点, AD CE ,垂足为 D AC 平分 DAB

(1)求证: CE O 的切线;

(2)若 AD = 4 cos CAB = 4 5 ,求 AB 的长.

来源:2020年云南省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,点 P O 的直径 AB 延长线上的一点 ( PB < OB ) ,点 E 是线段 OP 的中点.

(1)尺规作图:在直径 AB 上方的圆上作一点 C ,使得 EC = EP ,连接 EC PC (保留清晰作图痕迹,不要求写作法);并证明 PC O 的切线;

(2)在(1)的条件下,若 BP = 4 EB = 1 ,求 PC 的长.

来源:2020年云南省昆明市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图所示, AB O 的直径, AD BC 分别切 O A B 两点, CD O 有公共点 E ,且 AD = DE

(1)求证: CD O 的切线;

(2)若 AB = 12 BC = 4 ,求 AD 的长.

来源:2020年西藏中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,已知 AB O 的直径,直线 BC O 相切于点 B ,过点 A AD / / OC O 于点 D ,连接 CD

(1)求证: CD O 的切线.

(2)若 AD = 4 ,直径 AB = 12 ,求线段 BC 的长.

来源:2020年青海省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

初中数学切线的判定与性质解答题