如图,点 P 是 ⊙ O 的直径 AB 延长线上的一点 ( PB < OB ) ,点 E 是线段 OP 的中点.
(1)尺规作图:在直径 AB 上方的圆上作一点 C ,使得 EC = EP ,连接 EC , PC (保留清晰作图痕迹,不要求写作法);并证明 PC 是 ⊙ O 的切线;
(2)在(1)的条件下,若 BP = 4 , EB = 1 ,求 PC 的长.
一个不透明的口袋里装有分别标有汉字“秀”、“美”、“吉”、“安”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球。(1)若从中任取一个球,球上的汉字刚好是“吉”的概率为多少?(2)甲从中任取一球,不放回,再从中任取一球,请用树状图的方法,求出甲取出的两个球上的汉字恰能组成“秀美”或“吉安”的概率P1。(3)乙从中任取一球,记下汉字后再放回袋中,然后再从中任取一球,记乙取出的两个球上的汉字恰能组成“秀美”或“吉安”的概率为P2,指出P1,P2的大小关系(请直接写出结论,不必证明)。
先化简,再求值:,其中
已知:如图,直线AB与直线BC相交于点B,点D是直线BC上一点,求作:点E,使直线DE∥AB,且点E到B、D两点的距离相等.(尺规作图,要求在题目的原图中完成作图)
若关于x的不等式组恰有三个整数解,求实数a的取值范围。
在直角坐标系xOy中,已知点P是反比例函数y=(x>0)图象上一个动点,以P为圆心的圆始终与y轴相切,设切点为A.(1)如图1,⊙P运动到与x轴相切,设切点为K,试判断四边形OKPA的形状,并说明理由.(2)如图2,⊙P运动到与x轴相交,设交点为B,C.当四边形ABCP是菱形时:①求出点A,B,C的坐标.②在过A,B,C三点的抛物线上是否存在点M,使△MBP的面积是菱形ABCP面积的?若存在,试求出所有满足条件的M点的坐标;若不存在,试说明理由.