如图,在 中, ,点 在 边上,过 , , 三点的 交 边于另一点 ,且 是 的中点, 是 的一条直径,连接 并延长交 边于 点.
(1)求证:四边形 为平行四边形;
(2)当 时,求 的值.
问题提出
(1)如图①,在中,
,
,则
的外接圆半径
的值为 .
问题探究
(2)如图②,的半径为13,弦
,
是
的中点,
是
上一动点,求
的最大值.
问题解决
(3)如图③所示,、
、
是某新区的三条规划路,其中
,
,
,
所对的圆心角为
,新区管委会想在
路边建物资总站点
,在
,
路边分别建物资分站点
、
,也就是,分别在
、线段
和
上选取点
、
、
.由于总站工作人员每天都要将物资在各物资站点间按
的路径进行运输,因此,要在各物资站点之间规划道路
、
和
.为了快捷、环保和节约成本.要使得线段
、
、
之和最短,试求
的最小值.(各物资站点与所在道路之间的距离、路宽均忽略不计)
已知二次函数的图象过点
,点
与
不重合)是图象上的一点,直线
过点
且平行于
轴.
于点
,点
.
(1)求二次函数的解析式;
(2)求证:点在线段
的中垂线上;
(3)设直线交二次函数的图象于另一点
,
于点
,线段
的中垂线交
于点
,求
的值;
(4)试判断点与以线段
为直径的圆的位置关系.
如图,顶点为的抛物线
与
轴交于
,
两点,与
轴交于点
.
(1)求这条抛物线对应的函数表达式;
(2)问在轴上是否存在一点
,使得
为直角三角形?若存在,求出点
的坐标;若不存在,说明理由.
(3)若在第一象限的抛物线下方有一动点,满足
,过
作
轴于点
,设
的内心为
,试求
的最小值.
如图,抛物线为常数,
与
轴交于
,
两点,点
为抛物线的顶点,点
的坐标为
,
,连接
并延长与过
,
,
三点的
相交于点
.
(1)求点的坐标;
(2)过点作
的切线
交
轴于点
.
①如图1,求证:;
②如图2,连接,
,
,当
,
时,求
的值.
如图, 、 是 的切线, 、 是切点, 是 的直径,连接 ,交 于点 ,交 于点 .
(1)求证: ;
(2)若 恰好是 的中点,且四边形 的面积是 ,求阴影部分的面积;
(3)若 ,且 ,求切线 的长.
如图,已知 , 是 的平分线, 是射线 上一点, .动点 从点 出发,以 的速度沿 水平向左作匀速运动,与此同时,动点 从点 出发,也以 的速度沿 竖直向上作匀速运动.连接 ,交 于点 .经过 、 、 三点作圆,交 于点 ,连接 、 .设运动时间为 ,其中 .
(1)求 的值;
(2)是否存在实数 ,使得线段 的长度最大?若存在,求出 的值;若不存在,说明理由.
(3)求四边形 的面积.
(1)如图1,点为矩形
对角线
上一点,过点
作
,分别交
、
于点
、
.若
,
,
的面积为
,
的面积为
,则
;
(2)如图2,点为
内一点(点
不在
上),点
、
、
、
分别为各边的中点.设四边形
的面积为
,四边形
的面积为
(其中
,求
的面积(用含
、
的代数式表示);
(3)如图3,点为
内一点(点
不在
上),过点
作
,
,与各边分别相交于点
、
、
、
.设四边形
的面积为
,四边形
的面积为
(其中
,求
的面积(用含
、
的代数式表示);
(4)如图4,点、
、
、
把
四等分.请你在圆内选一点
(点
不在
、
上),设
、
、
围成的封闭图形的面积为
,
、
、
围成的封闭图形的面积为
,
的面积为
,
的面积为
,根据你选的点
的位置,直接写出一个含有
、
、
、
的等式(写出一种情况即可).
如图,在 中, , 与 相交于点 ,与 相交于点 ,连接 ,已知 .
(1)求证: 为 的切线;
(2)若 , ,求 的长.
如图,已知 是等边三角形, 是 内部的一点,连接 , .
(1)如图1,以 为直径的半圆 交 于点 ,交 于点 ,当点 在 上时,连接 ,在 边的下方作 , ,连接 ,求 的度数;
(2)如图2, 是 边上一点,且 ,当 时,连接 并延长,交 于点 ,若 ,求证: ;
(3)如图3, 是 边上一点,当 时,连接 .若 , , , 的面积为 , 的面积为 ,求 的值(用含 的代数式表示).
如图,半径为4的中,弦
的长度为
,点
是劣弧
上的一个动点,点
是弦
的中点,点
是弦
的中点,连接
、
、
.
(1)求的度数;
(2)当点沿着劣弧
从点
开始,逆时针运动到点
时,求
的外心
所经过的路径的长度;
(3)分别记,
的面积为
,
,当
时,求弦
的长度.
如图,抛物线 与 轴交于点 ,点 ,与 轴交于点 ,抛物线的对称轴为直线 ,点 坐标为 .
(1)求抛物线表达式;
(2)在抛物线上是否存在点 ,使 ,如果存在,求出点 坐标;如果不存在,请说明理由;
(3)在(2)的条件下,若点 在 轴上方,点 是直线 上方抛物线上的一个动点,求点 到直线 的最大距离;
(4)点 是线段 上的动点,点 是线段 上的动点,点 是线段 上的动点,三个动点都不与点 , , 重合,连接 , , ,得到 ,直接写出 周长的最小值.
如图,在 中, ,以 为直径的 与 相交于点 , ,垂足为 .
(1)求证: 是 的切线;
(2)若弦 垂直于 ,垂足为 , , ,求 的半径;
(3)在(2)的条件下,当 时,求线段 的长.
如图,在锐角三角形 中, 是 边上的高,以 为直径的 交 于点 ,交 于点 ,过点 作 ,垂足为 ,交 于点 ,交 于点 ,连接 , , .
(1)求证: ;
(2)若 , , ,求 的长.