如图,在四边形 ABCD 中, AB / / CD , AB ≠ CD , ∠ ABC = 90 ° ,点 E 、 F 分别在线段 BC 、 AD 上,且 EF / / CD , AB = AF , CD = DF .
(1)求证: CF ⊥ FB ;
(2)求证:以 AD 为直径的圆与 BC 相切;
(3)若 EF = 2 , ∠ DFE = 120 ° ,求 ΔADE 的面积.
已知:如图,正方形ABCD的边长为a,BM,DN分别平分正方形的两个外角,且满足,连结MC,NC,MN.(1)填空:与△ABM相似的三角形是△,=;(用含a的代数式表示)(2)求的度数;(3)猜想线段BM,DN和MN之间的等量关系并证明你的结论.
已知抛物线(其中).(1)求该抛物线与x轴的交点坐标及顶点坐标(可以用含k的代数式表示);(2)若记该抛物线的顶点坐标为,直接写出的最小值;(3)将该抛物线先向右平移个单位长度,再向上平移个单位长度,随着的变化,平移后的抛物线的顶点都在某个新函数的图象上,求这个新函数的解析式(不要求写自变量的取值范围).
阅读下列材料: 题目:已知实数a,x满足a>2且x>2,试判断与的大小关系,并加以说明. 思路:可用“求差法”比较两个数的大小,先列出与的差,再 说明y的符号即可. 现给出如下利用函数解决问题的方法: 简解:可将y的代数式整理成,要判断y的符号可借助函数的图象和性质解决. 参考以上解题思路解决以下问题: 已知a,b,c都是非负数,a<5,且,.(1)分别用含a的代数式表示4b,4c;(2)说明a,b,c之间的大小关系.
已知:如图,AB是⊙O的直径,AC是弦,∠BAC的平分线与 ⊙O的交点为D,DE⊥AC,与AC的延长线交于点E.(1)求证:直线DE是⊙O的切线;(2)若OE与AD交于点F,,求的值.
已知函数(x ≥ 0),满足当x =1时,, 且当x = 0与x =4时的函数值相等.(1)求函数(x ≥ 0)的解析式并画出它的 图象(不要求列表);(2)若表示自变量x相对应的函数值,且又已知关于x的方程有三个不相等的实数根,请利用图象直接写出实数k的取值范围.