初中数学

如图,直线 AB 经过 O 上的点 C ,直线 BO O 交于点 F 和点 D OA O 交于点 E ,与 DC 交于点 G OA = OB CA = CB

(1)求证: AB O 的切线;

(2)若 FC / / OA CD = 6 ,求图中阴影部分面积.

来源:2021年湖北省襄阳市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, C D O 上两点, C BD ̂ 的中点,过点 C AD 的垂线,垂足是 E .连接 AC BD 于点 F

(1)求证: CE O 的切线;

(2)若 DC DF = 6 ,求 cos ABD 的值.

来源:2021年湖北省武汉市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图, D 是以 AB 为直径的 O 上一点,过点 D 的切线 DE AB 的延长线于点 E ,过点 B BC DE AD 的延长线于点 C ,垂足为点 F

(1)求证: AB = BC

(2)若 O 的直径 AB 为9, sin A = 1 3

①求线段 BF 的长;

②求线段 BE 的长.

来源:2021年湖北省随州市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图,已知 AB O 的直径, C O 上一点, OCB 的角平分线交 O 于点 D F 在直线 AB 上,且 DF BC ,垂足为 E ,连接 AD BD

(1)求证: DF O 的切线;

(2)若 tan A = 1 2 O 的半径为3,求 EF 的长.

来源:2021年湖北省十堰市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° O BC AC 分别相切于点 E F BO 平分 ABC ,连接 OA

(1)求证: AB O 的切线;

(2)若 BE = AC = 3 O 的半径是1,求图中阴影部分的面积.

来源:2021年湖北省黄冈市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ABC = 90 ° O BC 边上一点,以 O 为圆心, OB 长为半径的 O AC 边相切于点 D ,交 BC 于点 E

(1)求证: AB = AD

(2)连接 DE ,若 tan EDC = 1 2 DE = 2 ,求线段 EC 的长.

来源:2021年湖北省鄂州市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内, ΔABO 的三个顶点坐标分别为 A ( - 1 , 3 ) B ( - 4 , 3 ) O ( 0 , 0 )

(1)画出 ΔABO 关于 x 轴对称的△ A 1 B 1 O ,并写出点 A 1 的坐标;

(2)画出 ΔABO 绕点 O 顺时针旋转 90 ° 后得到的△ A 2 B 2 O ,并写出点 A 2 的坐标;

(3)在(2)的条件下,求点 A 旋转到点 A 2 所经过的路径长(结果保留 π )

来源:2021年黑龙江省龙东地区中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

在古代,智慧的劳动人民已经会使用“石磨”,其原理为在磨盘的边缘连接一个固定长度的“连杆”,推动“连杆”带动磨盘转动,将粮食磨碎,物理学上称这种动力传输工具为“曲柄连杆机构”.

小明受此启发设计了一个“双连杆机构”,设计图如图1,两个固定长度的“连杆” AP BP 的连接点 P O 上,当点 P O 上转动时,带动点 A B 分别在射线 OM ON 上滑动, OM ON .当 AP O 相切时,点 B 恰好落在 O 上,如图2.

请仅就图2的情形解答下列问题.

(1)求证: PAO = 2 PBO

(2)若 O 的半径为5, AP = 20 3 ,求 BP 的长.

来源:2021年河南省中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图, PA 是以 AC 为直径的 O 的切线,切点为 A ,过点 A AB OP ,交 O 于点 B

(1)求证: PB O 的切线;

(2)若 AB = 6 cos PAB = 3 5 ,求 PO 的长.

来源:2021年贵州省黔东南州中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

如图, O 与等边 ΔABC 的边 AC AB 分别交于点 D E AE 是直径,过点 D DF BC 于点 F

(1)求证: DF O 的切线;

(2)连接 EF ,当 EF O 的切线时,求 O 的半径 r 与等边 ΔABC 的边长 a 之间的数量关系.

来源:2021年广西玉林市中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

如图, O ΔABC 的外接圆, AD O 的直径, F AD 延长线上一点,连接 CD CF ,且 DCF = CAD

(1)求证: CF O 的切线;

(2)若 cos B = 3 5 AD = 2 ,求 FD 的长.

来源:2021年广西贵港市中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

(本题满分10分)
如图,点的直径的延长线上,点上,

(1)求证:的切线;
(2)若的半径为2,求图中阴影部分的面积.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在正方形网格图中建立直角坐标系,一条圆弧经过网格点ABC,请在网格中进行下列操作:

(1) 请在图中确定该圆弧所在圆心D点的位置,D点坐标为______;
(2) 连接ADCD,求⊙D的半径及扇形ADC的圆心角度数;
(3) 若扇形DAC是某一个圆锥的侧面展开图,求该圆锥的底面半径。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,已知Rt△ABC和Rt△EBC,°。以边AC上的点O为圆心、OA为半径的⊙O与EC相切,D为切点,AD//BC。

(1)用尺规确定并标出圆心O;(不写做法和证明,保留作图痕迹)
(2)求证:[(3)若AD=1cm,,求BC长。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学圆解答题