初中数学

如图1,在 ΔABC 中, ACB = 90 ° AC = BC ,点 D AB 边上一点(含端点 A B ) ,过点 B BE 垂直于射线 CD ,垂足为 E ,点 F 在射线 CD 上,且 EF = BE ,连接 AF BF

(1)求证: ΔABF ΔCBE

(2)如图2,连接 AE ,点 P M N 分别为线段 AC AE EF 的中点,连接 PM MN PN .求 PMN 的度数及 MN PM 的值;

(3)在(2)的条件下,若 BC = 2 ,直接写出 ΔPMN 面积的最大值.

来源:2021年四川省广元市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

在等腰 ΔADE 中, AE = DE ΔABC 是直角三角形, CAB = 90 ° ABC = 1 2 AED ,连接 CD BD ,点 F BD 的中点,连接 EF

(1)当 EAD = 45 ° ,点 B 在边 AE 上时,如图①所示,求证: EF = 1 2 CD

(2)当 EAD = 45 ° ,把 ΔABC 绕点 A 逆时针旋转,顶点 B 落在边 AD 上时,如图②所示,当 EAD = 60 ° ,点 B 在边 AE 上时,如图③所示,猜想图②、图③中线段 EF CD 又有怎样的数量关系?请直接写出你的猜想,不需证明.

来源:2021年黑龙江省龙东地区中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中,对角线 AC BD 交于点 O ,已知 OA = OC OB = OD ,过点 O EF BD ,分别交 AB DC 于点 E F ,连接 DE BF

(1)求证:四边形 DEBF 是菱形:

(2)设 AD / / EF AD + AB = 12 BD = 4 3 ,求 AF 的长.

来源:2021年广西玉林市中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, ACB = CAD = 90 ° ,点 E BC 上, AE / / DC EF AB ,垂足为 F

(1)求证:四边形 AECD 是平行四边形;

(2)若 AE 平分 BAC BE = 5 cos B = 4 5 ,求 BF AD 的长.

来源:2021年北京市中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, A = C = 90 ° DE BF 分别平分 ADC ABC ,并交线段 AB CD 于点 E F (点 E B 不重合).在线段 BF 上取点 M N (点 M BN 之间),使 BM = 2 FN .当点 P 从点 D 匀速运动到点 E 时,点 Q 恰好从点 M 匀速运动到点 N .记 QN = x PD = y ,已知 y = - 6 5 x + 12 ,当 Q BF 中点时, y = 24 5

(1)判断 DE BF 的位置关系,并说明理由.

(2)求 DE BF 的长.

(3)若 AD = 6

①当 DP = DF 时,通过计算比较 BE BQ 的大小关系.

②连结 PQ ,当 PQ 所在直线经过四边形 ABCD 的一个顶点时,求所有满足条件的 x 的值.

来源:2020年浙江省温州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,已知 AC BD O 的两条直径,连接 AB BC OE AB 于点 E ,点 F 是半径 OC 的中点,连接 EF

(1)设 O 的半径为1,若 BAC = 30 ° ,求线段 EF 的长.

(2)连接 BF DF ,设 OB EF 交于点 P

①求证: PE = PF

②若 DF = EF ,求 BAC 的度数.

来源:2020年浙江省杭州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

已知, ΔABC 中, B = C P BC 边上一点,作 CPE = BPF ,分别交边 AC AB 于点 E F

(1)若 CPE = C (如图 1 ) ,求证: PE + PF = AB

(2)若 CPE C ,过点 B CBD = CPE ,交 CA (或 CA 的延长线)于点 D .试猜想:线段 PE PF BD 之间的数量关系,并就 CPE > C 情形(如图 2 ) 说明理由.

(3)若点 F A 重合(如图 3 ) C = 27 ° ,且 PA = AE

①求 CPE 的度数;

②设 PB = a PA = b AB = c ,试证明: b = a 2 c 2 c

来源:2018年浙江省嘉兴市(舟山市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是平行四边形, AD = AC AD AC E AB 的中点, F AC 延长线上一点.

(1)若 ED EF ,求证: ED = EF

(2)在(1)的条件下,若 DC 的延长线与 FB 交于点 P ,试判定四边形 ACPE 是否为平行四边形?并证明你的结论(请先补全图形,再解答);

(3)若 ED = EF ED EF 垂直吗?若垂直给出证明,若不垂直说明理由.

来源:2017年山东省泰安市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系中, O 是坐标原点,抛物线 y = 3 12 x 2 3 3 x + 8 3 x 轴正半轴交于点 A ,与 y 轴交于点 B ,连接 AB ,点 M N 分别是 OA AB 的中点, Rt Δ CDE Rt Δ ABO ,且 ΔCDE 始终保持边 ED 经过点 M ,边 CD 经过点 N ,边 DE y 轴交于点 H ,边 CD y 轴交于点 G

(1)填空: OA 的长是  ABO 的度数是  度;

(2)如图2,当 DE / / AB ,连接 HN

①求证:四边形 AMHN 是平行四边形;

②判断点 D 是否在该抛物线的对称轴上,并说明理由;

(3)如图3,当边 CD 经过点 O 时,(此时点 O 与点 G 重合),过点 D DQ / / OB ,交 AB 延长线上于点 Q ,延长 ED 到点 K ,使 DK = DN ,过点 K KI / / OB ,在 KI 上取一点 P ,使得 PDK = 45 ° (点 P Q 在直线 ED 的同侧),连接 PQ ,请直接写出 PQ 的长.

来源:2017年辽宁省沈阳市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,抛物线 y = a x 2 + bx + 2 ( a 0 ) 经过点 A ( - 2 , - 4 ) 和点 C ( 2 , 0 ) ,与 y 轴交于点 D ,与 x 轴的另一交点为点 B

(1)求抛物线的解析式;

(2)如图1,连接 BD ,在抛物线上是否存在点 P ,使得 PBC = 2 BDO ?若存在,请求出点 P 的坐标;若不存在,请说明理由;

(3)如图2,连接 AC ,交 y 轴于点 E ,点 M 是线段 AD 上的动点(不与点 A ,点 D 重合),将 ΔCME 沿 ME 所在直线翻折,得到 ΔFME ,当 ΔFME ΔAME 重叠部分的面积是 ΔAMC 面积的 1 4 时,请直接写出线段 AM 的长.

来源:2020年辽宁省鞍山市中考数学试卷
  • 更新:2021-01-15
  • 题型:未知
  • 难度:未知

如图1,抛物线 y = a x 2 + bx + 3 ( a 0 ) x 轴交于 A ( - 1 , 0 ) B ( 3 , 0 ) ,与 y 轴交于点 C .已知直线 y = kx + n B C 两点.

(1)求抛物线和直线 BC 的表达式;

(2)点 P 是抛物线上的一个动点.

①如图1,若点 P 在第一象限内,连接 PA ,交直线 BC 于点 D .设 ΔPDC 的面积为 S 1 ΔADC 的面积为 S 2 ,求 S 1 S 2 的最大值;

②如图2,抛物线的对称轴 l x 轴交于点 E ,过点 E EF BC ,垂足为 F .点 Q 是对称轴 l 上的一个动点,是否存在以点 E F P Q 为顶点的四边形是平行四边形?若存在,求出点 P Q 的坐标;若不存在,请说明理由.

来源:2020年湖南省郴州市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系中, A ( - 2 , - 1 ) B ( 3 , - 1 ) ,以 O 为圆心, OA 的长为半径的半圆 O AO 延长线于 C ,连接 AB BC ,过 O ED / / BC 分别交 AB 和半圆 O E D ,连接 OB CD

(1)求证: BC 是半圆 O 的切线;

(2)试判断四边形 OBCD 的形状,并说明理由;

(3)如图2,若抛物线经过点 D 且顶点为 E

①求此抛物线的解析式;

②点 P 是此抛物线对称轴上的一个动点,以 E D P 为顶点的三角形与 ΔOAB 相似,问抛物线上是否存在一点 Q .使 S ΔEPQ = S ΔOAB ?若存在,请直接写出 Q 点的横坐标;若不存在,说明理由.

来源:2020年湖北省荆州市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,平行四边形的顶点的坐标分别为,经过两点的抛物线与轴的一个交点的坐标为

(1)求该抛物线的解析式;

(2)若的平分线交于点,交抛物线的对称轴于点,点轴上一动点,当的值最小时,求点的坐标;

(3)在(2)的条件下,过点的垂线交于点,点分别为抛物线及其对称轴上的动点,是否存在这样的点,使得以点为顶点的四边形为平行四边形?若存在,直接写出点的坐标,若不存在,说明理由.

来源:2019年湖北省荆州市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,在等边中,,动点从点出发以的速度沿匀速运动.动点同时从点出发以同样的速度沿的延长线方向匀速运动,当点到达点时,点同时停止运动.设运动时间为.过点,连接边于.以为边作平行四边形

(1)当为何值时,为直角三角形;

(2)是否存在某一时刻,使点的平分线上?若存在,求出的值,若不存在,请说明理由;

(3)求的长;

(4)取线段的中点,连接,将沿直线翻折,得△,连接,当为何值时,的值最小?并求出最小值.

来源:2019年湖南省衡阳市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,抛物线经过轴上的点和点轴上的点,经过两点的直线为

①求抛物线的解析式.

②点出发,在线段上以每秒1个单位的速度向运动,同时点出发,在线段上以每秒2个单位的速度向运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为秒,求为何值时,的面积最大并求出最大值.

③过点于点,过抛物线上一动点(不与点重合)作直线的平行线交直线于点.若点为顶点的四边形是平行四边形,求点的横坐标.

来源:2019年四川省巴中市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

初中数学平行四边形的判定与性质解答题