在等腰 ΔADE 中, AE = DE , ΔABC 是直角三角形, ∠ CAB = 90 ° , ∠ ABC = 1 2 ∠ AED ,连接 CD 、 BD ,点 F 是 BD 的中点,连接 EF .
(1)当 ∠ EAD = 45 ° ,点 B 在边 AE 上时,如图①所示,求证: EF = 1 2 CD ;
(2)当 ∠ EAD = 45 ° ,把 ΔABC 绕点 A 逆时针旋转,顶点 B 落在边 AD 上时,如图②所示,当 ∠ EAD = 60 ° ,点 B 在边 AE 上时,如图③所示,猜想图②、图③中线段 EF 和 CD 又有怎样的数量关系?请直接写出你的猜想,不需证明.
已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(-2,0),与反比例函数在第一象限内的图象的交于点B(2,n),连结BO,若S△AOB=4. (1)求该反比例函数的解析式和直线AB的解析式; (2)若直线AB与y轴的交点为C,求△OCB的面积.
如图,已知反比例函数y=(x>0,k是常数)的图象经过点A(1,4),点B(m,n),其中m>1,AM⊥x轴,垂足为M,BN⊥y轴,垂足为N,AM与BN的交点为C. (1)写出反比例函数解析式; (2)求证:△ACB∽△NOM; (3)若△ACB与△NOM的相似比为2,求出B点的坐标及AB所在直线的解析式.
如图,已知反比例函数y=的图象与一次函数y=ax+b的图象交于M(2,m)和N(-1,-4)两点. (1)求这两个函数的解析式; (2)求△MON的面积; (3)根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.
已知反比例函数的图象与一次函数的图象交点为(2,2). (1)求这两个函数的解析式; (2)在下面的坐标纸中大致画出两个函数的图象,根据图象写出不等式的解集.
已知:如图1,一次函数的图像与x轴、y轴分别交于点A、B,与函数的图像交于点C,点C的横坐标为-3. (1)求点B的坐标; (2)若点Q为直线OC上一点,且,求点Q的坐标; (3)如图2,点D为线段OA上一点,∠ACD=∠AOC.点P为x轴负半轴上一点,且点P到直线CD和直线CO的距离相等. ① 在图2中,只利用圆规作图找到点P的位置; (保留作图痕迹,不得在图2中作无关元素.) ② 求点P的坐标.