已知, ΔABC 中, ∠ B = ∠ C , P 是 BC 边上一点,作 ∠ CPE = ∠ BPF ,分别交边 AC , AB 于点 E , F .
(1)若 ∠ CPE = ∠ C (如图 1 ) ,求证: PE + PF = AB .
(2)若 ∠ CPE ≠ ∠ C ,过点 B 作 ∠ CBD = ∠ CPE ,交 CA (或 CA 的延长线)于点 D .试猜想:线段 PE , PF 和 BD 之间的数量关系,并就 ∠ CPE > ∠ C 情形(如图 2 ) 说明理由.
(3)若点 F 与 A 重合(如图 3 ) , ∠ C = 27 ° ,且 PA = AE .
①求 ∠ CPE 的度数;
②设 PB = a , PA = b , AB = c ,试证明: b = a 2 − c 2 c .
如图,已知正方形ABCD,点E是BC上一点,以AE为边作正方形AEFG。(1)连结GD,求证△ADG≌△ABE;(2)连结FC,求证∠FCN=45°;(3)请问在AB边上是否存在一点Q,使得四边形DQEF是平行四边形?若存在,请证明;若不存在,请说明理由。
如图,已知△ABC中,AB=AC,AD是∠BAC的平分线,AE是∠BAC的外角平分线,CE⊥AE于点E。(1)求证:四边形ADCE为矩形;(2)求证:四边形ABDE为平行四边形。
已知,观察: 通过观察,求的值.
如图,E是正方形ABCD的边BC延长线上的点,且CE=AC(1)求∠ACE、∠CAE 的度数;(2)若AB=3cm,请求出△ACE的面积。(3)以AE为边的正方形的面积是多少?
当和时,代数式的值都为0,求的m和n的值.