已知, ΔABC 中, ∠ B = ∠ C , P 是 BC 边上一点,作 ∠ CPE = ∠ BPF ,分别交边 AC , AB 于点 E , F .
(1)若 ∠ CPE = ∠ C (如图 1 ) ,求证: PE + PF = AB .
(2)若 ∠ CPE ≠ ∠ C ,过点 B 作 ∠ CBD = ∠ CPE ,交 CA (或 CA 的延长线)于点 D .试猜想:线段 PE , PF 和 BD 之间的数量关系,并就 ∠ CPE > ∠ C 情形(如图 2 ) 说明理由.
(3)若点 F 与 A 重合(如图 3 ) , ∠ C = 27 ° ,且 PA = AE .
①求 ∠ CPE 的度数;
②设 PB = a , PA = b , AB = c ,试证明: b = a 2 − c 2 c .
已知:如图,点是上一点,与是等腰三角形且底边分别为、,求的度数。
如图,平面直角坐标系中,⊙与轴相切于点,与轴相交于点两点,连结。(1)求证;(2)若点的坐标为,直接写出点的坐标(3)在(2)的条件下,过两点作⊙与轴的正半轴交于点,与的延长线交于点,当⊙的大小变化时,给出下列两个结论:的值不变;②的值不变; 其中有且只有一个结论是正确的,请你判断哪一个结论正确,证明正确的结论并求出其值。
如图,在中,,平分交于,点在上,以为半径的圆,交于,交于,且点在⊙上,连结,切⊙于点。(1)求证;(2)若,求⊙的半径;
已知一元二次方程(1)若,求该方程的根;(2)若,判断该方程的根的情况;(3)若是该方程的两个根,且,求证。
如图,内接于⊙,点在的延长线上,(1)求证直线是⊙的切线;(2)若,求的长。