已知, ΔABC 中, ∠ B = ∠ C , P 是 BC 边上一点,作 ∠ CPE = ∠ BPF ,分别交边 AC , AB 于点 E , F .
(1)若 ∠ CPE = ∠ C (如图 1 ) ,求证: PE + PF = AB .
(2)若 ∠ CPE ≠ ∠ C ,过点 B 作 ∠ CBD = ∠ CPE ,交 CA (或 CA 的延长线)于点 D .试猜想:线段 PE , PF 和 BD 之间的数量关系,并就 ∠ CPE > ∠ C 情形(如图 2 ) 说明理由.
(3)若点 F 与 A 重合(如图 3 ) , ∠ C = 27 ° ,且 PA = AE .
①求 ∠ CPE 的度数;
②设 PB = a , PA = b , AB = c ,试证明: b = a 2 − c 2 c .
某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天. (1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2? (2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?
如图,AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC. (1)求证:EF是⊙O的切线; (2)求证:AC2=AD•AB; (3)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.
如图,已知A(-4,0.5),B(-1,2)是一次函数y=ax+b与反比例函数y=(m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D. (1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值? (2)求一次函数解析式及m的值; (3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.
莘县旅游资源丰富,其中燕塔是莘县著名旅游景点(如图①).一天身高1.5m的小明从A处仰视观看燕塔顶部,其仰角为30°.小明又向西走了30m,∠APB=15°(如图②).请你帮小明算出雁塔的高度.(结果保留一位小数,参考数据:≈1.41,≈1.73)
已知:平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E,F,G分别是OC,OD,AB的中点.求证: (1)BE⊥AC; (2)EG=EF.