如图,在 中, , 是对角线 上的两点(点 在点 左侧),且 .
(1)求证:四边形 是平行四边形;
(2)当 , , 时,求 的长.
如图, 是半径为3的 的一条弦, ,点 是 上的一个动点(不与点 , 重合),以 , , 为顶点作 .
(1)如图2,若点 是劣弧 的中点.
①求证: 是菱形;
②求 的面积.
(2)若点 运动到优弧 上,且 有一边与 相切.
①求 的长;
②写出 对角线所夹锐角的正切值.
如图1,在 中, , ,点 是 边上一点(含端点 、 ,过点 作 垂直于射线 ,垂足为 ,点 在射线 上,且 ,连接 、 .
(1)求证: ;
(2)如图2,连接 ,点 、 、 分别为线段 、 、 的中点,连接 、 、 .求 的度数及 的值;
(3)在(2)的条件下,若 ,直接写出 面积的最大值.
在① ;② ;③ 这三个条件中任选一个补充在下面横线上,并完成证明过程.
已知,如图,四边形 是平行四边形,对角线 、 相交于点 ,点 、 在 上, (填写序号).
求证: .
如图,点 是 的中点,四边形 是平行四边形.
(1)求证:四边形 是平行四边形;
(2)如果 ,求证:四边形 是矩形.
如图所示,在矩形 中,点 在线段 上,点 在线段 的延长线上,连接 交线段 于点 ,连接 ,若 .
(1)求证:四边形 是平行四边形;
(2)若 ,求线段 的长度.
如图,在四边形 中, , ,垂足分别为点 , .
(1)请你只添加一个条件(不另加辅助线),使得四边形 为平行四边形,你添加的条件是 ;
(2)添加了条件后,证明四边形 为平行四边形.
如图1,在 中, , 是 边上的一点, 为 的中点,过点 作 的平行线交 的延长线于 ,且 ,连接 .
(1)求证: ;
(2)在图1中 上取一点 ,使 ,作 关于边 的对称点 ,连接 、 、 、 、 得图2.
①求证: ;
②设 与 相交于点 ,求证: , .
如图,在 中,点 、 分别在边 、 上,且 .
(1)探究四边形 的形状,并说明理由;
(2)连接 ,分别交 、 于点 、 ,连接 交 于点 .若 , ,求 的长.
在等腰 中, , 是直角三角形, , ,连接 、 ,点 是 的中点,连接 .
(1)当 ,点 在边 上时,如图①所示,求证: ;
(2)当 ,把 绕点 逆时针旋转,顶点 落在边 上时,如图②所示,当 ,点 在边 上时,如图③所示,猜想图②、图③中线段 和 又有怎样的数量关系?请直接写出你的猜想,不需证明.
如图,在四边形 中,对角线 与 交于点 ,已知 , ,过点 作 ,分别交 、 于点 , ,连接 , .
(1)求证:四边形 是菱形:
(2)设 , , ,求 的长.
如图,在四边形 中, ,点 在 上, , ,垂足为 .
(1)求证:四边形 是平行四边形;
(2)若 平分 , , ,求 和 的长.
如图,在四边形 中, , , 分别平分 , ,并交线段 , 于点 , (点 , 不重合).在线段 上取点 , (点 在 之间),使 .当点 从点 匀速运动到点 时,点 恰好从点 匀速运动到点 .记 , ,已知 ,当 为 中点时, .
(1)判断 与 的位置关系,并说明理由.
(2)求 , 的长.
(3)若 .
①当 时,通过计算比较 与 的大小关系.
②连结 ,当 所在直线经过四边形 的一个顶点时,求所有满足条件的 的值.