如图,在四边形 ABCD 中, ∠ ACB = ∠ CAD = 90 ° ,点 E 在 BC 上, AE / / DC , EF ⊥ AB ,垂足为 F .
(1)求证:四边形 AECD 是平行四边形;
(2)若 AE 平分 ∠ BAC , BE = 5 , cos B = 4 5 ,求 BF 和 AD 的长.
关于的一元二次方程 (1)求证:方程有两个不相等的实数根; (2)为何整数时,此方程的两个根都为正整数.
解一元二次方程. (1) (2) (3) (4)
如图,A、B、C、D为矩形的4个顶点,AB=16cm,BC=6cm,动点P、Q分别以3cm/s、2cm/s的速度从点A、C同时出发,点Q从点C向点D移动. (1)若点P从点A移动到点B停止,点P、Q分别从点A、C同时出发,问经过2s时P、Q两点之间的距离是多少cm? (2)若点P从点A移动到点B停止,点Q随点P的停止而停止移动,点P、Q分别从点A、C同时出发,问经过多长时间P、Q两点之间的距离是10cm? (3)若点P沿着AB→BC→CD移动,点P、Q分别从点A、C同时出发,点Q从点C移动到点D停止时,点P随点Q的停止而停止移动,试探求经过多长时间△PBQ的面积为12cm2?
如图,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上的任意一点 (不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD. (1)弦长AB等于 (结果保留根号); (2)当∠D=20°时,求∠BOD的度数; (3)当AC的长度为多少时,以A、C、D为顶点的三角形与以B、C、0为顶点的三角形相似?请写出解答过程.
已知:△ABC的两边AB、AC的长是关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0的两个实数根,第三边BC的长为5. (1)k为何值时,△ABC是以BC为斜边的直角三角形? (2)k为何值时,△ABC是等腰三角形?并求△ABC的周长.