如图,在等边ΔABC中,AB=6cm,动点P从点A出发以1cm/s的速度沿AB匀速运动.动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动.设运动时间为t(s).过点P作PE⊥AC于E,连接PQ交AC边于D.以CQ、CE为边作平行四边形CQFE.
(1)当t为何值时,ΔBPQ为直角三角形;
(2)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由;
(3)求DE的长;
(4)取线段BC的中点M,连接PM,将ΔBPM沿直线PM翻折,得△B'PM,连接AB',当t为何值时,AB'的值最小?并求出最小值.
综合实践课上,小明所在小组要测量护城河的宽度.如图所示是护城河的一段河岸AB上有一排大树,相邻两棵大树之间的距离均为10米.小明先用测角仪在河岸CD的M处测得∠α=36°,然后沿河岸走50米到达N点,测得∠α=720.请你根据这些数据帮小明他们算出河宽FR(结果保留两位有效数字)’ (参考数据:sin360≈0.59, cos360≈0.81, tan360≈0.73, sin720≈0.95, cos720≈0.31,tan720≈3.08)
在某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成乙队单独完成这项工程需要多少天甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?
先化简,再求代数式的值:其中a= tan600 - 2sin300.
如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆C,点B是该半圆周上一动点,连接OB、AB,并延长AB至点D,使DB=AB,过点D作轴垂线,分别交轴、直线OB于点E、F,点E为垂足,连接CF.当∠AOB=30°时,求弧AB的长度当DE=8时,求线段EF的长;在点B运动过程中,是否存在以点E、C、F为顶点的三角形与△AOB相似,若存在,请求出此时点E的坐标;若不存在,请说明理由.
如图,抛物线过原点O,与x轴交于A,点D(4,2)在该抛物线上,过点D作CD∥x轴,交抛物线于点C,交y轴于点B,连结CO、AD.求抛物线的解析式及点C的坐标将△BCO绕点O按顺时针旋转90°后 再沿x轴对折得到△OEF(点C与点E对应),判断点E是否落在抛物线上,并说明理由;设过点E的直线交OA于点P,交CD边于点Q. 问是否存在点P,使直线PQ分梯形AOCD的面积为1∶3两部分?若存在,求出P点坐标;若不存在,请说明理由.