如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆C,点B是该半圆周上一动点,连接OB、AB,并延长AB至点D,使DB=AB,过点D作轴垂线,分别交轴、直线OB于点E、F,点E为垂足,连接CF.当∠AOB=30°时,求弧AB的长度当DE=8时,求线段EF的长;在点B运动过程中,是否存在以点E、C、F为顶点的三角形与△AOB相似,若存在,请求出此时点E的坐标;若不存在,请说明理由.
如图,已知抛物线与轴交于(,0)、两点,与轴交于点,其对称轴为直线.(1)求抛物线的解析式;(2)把线段沿轴向右平移,设平移后、的对应点分别为A′、C′,当C′落在抛物线上时,求A′、C′的坐标;(3)除(2)中的点A′、C′外,在x轴和抛物线上是否还分别存在点E、F,使得以A、C、E、F为顶点的四边形为平行四边形,若存在,求出E、F的坐标;若不存在,请说明理由。
端午节期间,某食品店平均每天可卖出300只粽子,且卖出1只粽子的利润是1元。经调查发现,零售单价每降0.1元,每天可多卖出100只粽子。为了使每天获取的利润更多,该店决定把零售单价下降元。在不考虑其他因素的条件下,当定为多少时,才能使该店每天获取的利润是420元,并且卖出的粽子更多?
如图:已知二次函数的图象经过点A(-1,0),B(3,0),C(0,-5),(1)试确定此二次函数的解析式;(2)点P是抛物线对称轴上的一个动点,是否存在点P,使PB+PC的值最小,如果存在,请求出点P的坐标,如果不存在,请说明理由。
六一儿童节,某学习用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠。其中,书包每个定价20元,水性笔每支定价5元。小丽和同学需买4个书包,水性笔若干支(不少于4支)。(1)分别写出两种优惠方法购买费用(元)与所买水性笔支数(支)的函数解析式(请化简函数解析式);(2)对的取值情况进行分析,说明按哪种优惠方法购买比较便宜。
如图,杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线的一部分。(1)求演员弹跳离地面的最大高度;(2)已知在一次表演中,人梯高=4米,人梯到起跳点的水平距离是6米,问这次表演是否成功?请说明理由。