在平面直角坐标系中,抛物线 y = a x 2 + bx + 2 ( a ≠ 0 ) 经过点 A ( - 2 , - 4 ) 和点 C ( 2 , 0 ) ,与 y 轴交于点 D ,与 x 轴的另一交点为点 B .
(1)求抛物线的解析式;
(2)如图1,连接 BD ,在抛物线上是否存在点 P ,使得 ∠ PBC = 2 ∠ BDO ?若存在,请求出点 P 的坐标;若不存在,请说明理由;
(3)如图2,连接 AC ,交 y 轴于点 E ,点 M 是线段 AD 上的动点(不与点 A ,点 D 重合),将 ΔCME 沿 ME 所在直线翻折,得到 ΔFME ,当 ΔFME 与 ΔAME 重叠部分的面积是 ΔAMC 面积的 1 4 时,请直接写出线段 AM 的长.
(本题8分)“湖田十月清霜堕,晚稻初香蟹如虎”,又到了食蟹的好季节啦!某经销商去水产批发市场采购太湖蟹,他看中了A、B两家的某种品质相近的太湖蟹.零售价都为60元/千克,批发价各不相同. A家规定:批发数量不超过100千克,按零售价的92%优惠;批发数量超过100千克但不超过200千克,按零售价的90%优惠;超过200千克的按零售价的88%优惠. B家的规定如下表:
(1)如果他批发80千克太湖蟹,则他在A 、B两家批发分别需要多少元? (2)如果他批发x千克太湖蟹 (150<x<200),请你分别用含字母x的式子表示他在A 、B两家批发所需的费用; (3)现在他要批发195千克太湖蟹,你能帮助他选择在哪家批发更优惠吗?请说明理由.
(本题8分)如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动。它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负。如果从A到B记为:A→B(+1,+4),从B到A记为:A→B(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中 (1)A→C(,),B→C(,), C→(+1,); (2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程; (3)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,-1), (-2,+3),(-1,-2),请在图中标出P的位置。
(本题6分)在如图所示的3×3的方格中,画出3个面积小于9的不同的正方形,同时要求所画正方形的顶点都在方格的顶点上,并且写出边长.
边长为边长为边长为
(本题6分)在数轴上表示下列各数,并用“<”连接起来。,,,,,,
某市热带植物园的门票价格规定如下表所列.某校七年级(1)、(2)两个班学生共103人去该园参观, 其中七(1)班人数不少于30人且不多于50人. 经预算,若两班都以班为单位分别购票,则总共付1950元.
(1)若两班学生合在一起作为一个团体购票,则最多可以节省门票多少元? (2)求两班各有多少名学生?