初中数学

ΔABC 中, AB = BC ,点 O AC 的中点,点 P AC 上的一个动点(点 P 不与点 A O C 重合).过点 A ,点 C 作直线 BP 的垂线,垂足分别为点 E 和点 F ,连接 OE OF

(1)如图1,请直接写出线段 OE OF 的数量关系;

(2)如图2,当 ABC = 90 ° 时,请判断线段 OE OF 之间的数量关系和位置关系,并说明理由

(3)若 | CF AE | = 2 EF = 2 3 ,当 ΔPOF 为等腰三角形时,请直接写出线段 OP 的长.

来源:2018年辽宁省葫芦岛市中考数学试卷
  • 更新:2021-05-10
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° CAB = 30 ° ,以线段 AB 为边向外作等边 ΔABD ,点 E 是线段 AB 的中点,连接 CE 并延长交线段 AD 于点 F

(1)求证:四边形 BCFD 为平行四边形;

(2)若 AB = 6 ,求平行四边形 BCFD 的面积.

来源:2018年湖南省永州市中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° CD 是斜边 AB 上的中线,以 CD 为直径的 O 分别交 AC BC 于点 M N ,过点 N NE AB ,垂足为 E

(1)若 O 的半径为 5 2 AC = 6 ,求 BN 的长;

(2)求证: NE O 相切.

来源:2019年江苏省盐城市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,已知 ΔABC ACB = 90 ° AC < BC ,点 D AB 的中点,过点 D BC 的垂线,垂足为点 F ,过点 A C D O BC 于点 E ,连接 CD DE

(1)求证: DF O 的切线;

(2)若 AC = 3 BC = 9 ,求 DE 的长.

来源:2016年辽宁省锦州市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

如图,△ABC是⊙O的内接三角形,AB为直径,过点B的切线与AC的延长线交于点DEBD中点,连接CE

(1)求证:CE是⊙O的切线;

(2)若AC=4,BC=2,求BDCE的长.

来源:2016年湖南省永州市中考数学试卷
  • 更新:2021-04-15
  • 题型:未知
  • 难度:未知

已知:如图,在 Rt Δ ABC 中, ACB = 90 ° ,点 M 是斜边 AB 的中点, MD / / BC ,且 MD = CM DE AB 于点 E ,连接 AD CD

(1)求证: ΔMED ΔBCA

(2)求证: ΔAMD ΔCMD

(3)设 ΔMDE 的面积为 S 1 ,四边形 BCMD 的面积为 S 2 ,当 S 2 = 17 5 S 1 时,求 cos ABC 的值.

来源:2018年四川省资阳市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AD 是边 BC 上的中线, BAD = CAD CE / / AD CE BA 的延长线于点 E BC = 8 AD = 3

(1)求 CE 的长;

(2)求证: ΔABC 为等腰三角形.

(3)求 ΔABC 的外接圆圆心 P 与内切圆圆心 Q 之间的距离.

来源:2018年湖南省长沙市中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

如图, Rt Δ ABC 中, ACB = 90 ° ,顶点 A B 都在反比例函数 y = k x ( x > 0 ) 的图象上,直线 AC x 轴,垂足为 D ,连结 OA OC ,并延长 OC AB 于点 E ,当 AB = 2 OA 时,点 E 恰为 AB 的中点,若 AOD = 45 ° OA = 2 2

(1)求反比例函数的解析式;

(2)求 EOD 的度数.

来源:2020年江西省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° ,点 D E 分别是边 BC AB 上的中点,连接 DE 并延长至点 F ,使 EF = 2 DE ,连接 CE AF

(1)证明: AF = CE

(2)当 B = 30 ° 时,试判断四边形 ACEF 的形状并说明理由.

来源:2017年贵州省贵阳市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° D E 分别是 AB AC 的中点,连接 CD ,过 E EF / / DC BC 的延长线于 F

(1)证明:四边形 CDEF 是平行四边形;

(2)若四边形 CDEF 的周长是 25 cm AC 的长为 5 cm ,求线段 AB 的长度.

来源:2018年黑龙江省大庆市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形, ACB ECD 恰好为对顶角, ABC = CDE = 90 ° ,连接 BD AB = BD ,点 F 是线段 CE 上一点.

探究发现:

(1)当点 F 为线段 CE 的中点时,连接 DF (如图(2) ) ,小明经过探究,得到结论: BD DF .你认为此结论是否成立?    .(填"是"或"否" )

拓展延伸:

(2)将(1)中的条件与结论互换,即: BD DF ,则点 F 为线段 CE 的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.

问题解决:

(3)若 AB = 6 CE = 9 ,求 AD 的长.

来源:2020年山东省泰安市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△ACD′的位置,若平移开始后点D′未到达点B时,AC′交CDEDC′交CB于点F,连接EF,当四边形EDDF为菱形时,试探究△ADE的形状,并判断△ADE与△EFC′是否全等?请说明理由.

来源:2016年湖北省荆州市中考数学试卷
  • 更新:2021-04-08
  • 题型:未知
  • 难度:未知

(1)如图1,已知 EK 垂直平分 BC ,垂足为 D AB EK 相交于点 F ,连接 CF .求证: AFE = CFD

(2)如图2,在 Rt Δ GMN 中, M = 90 ° P MN 的中点.

①用直尺和圆规在 GN 边上求作点 Q ,使得 GQM = PQN (保留作图痕迹,不要求写作法);

②在①的条件下,如果 G = 60 ° ,那么 Q GN 的中点吗?为什么?

来源:2018年江苏省常州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图①, ΔAOB ΔCOD ,延长 AB CD 相交于点 E

(1)求证: DE = BE

(2)将两个三角形绕点 O 旋转,当 AEC = 90 ° 时(如图② ) ,连接 BC AD .取 BC 的中点 F ,连接 EF ,则线段 EF AD 的数量关系为  ,位置关系为  

(3)将图②中的线段 EB ED 同时绕点 E 顺时针方向旋转到图③所示位置,连接 AD BC ,取 BC 的中点 F ,连接 EF ,请你判断(2)中的结论是否成立?若成立,请给出证明;若不成立,请说明理由.

来源:2016年辽宁省铁岭市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

(1)如图①,点 D AB 上,点 E AC 上, AD = AE B = C .求证: AB = AC

(2)如图②, A O 上一点,按以下步骤作图:

①连接 OA

②以点 A 为圆心, AO 长为半径作弧,交 O 于点 B

③在射线 OB 上截取 BC = OA

④连接 AC

AC = 3 ,求 O 的半径.

来源:2020年江苏省南通市中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

初中数学直角三角形斜边上的中线解答题