初中数学

(1)如图1,已知 EK 垂直平分 BC ,垂足为 D AB EK 相交于点 F ,连接 CF .求证: AFE = CFD

(2)如图2,在 Rt Δ GMN 中, M = 90 ° P MN 的中点.

①用直尺和圆规在 GN 边上求作点 Q ,使得 GQM = PQN (保留作图痕迹,不要求写作法);

②在①的条件下,如果 G = 60 ° ,那么 Q GN 的中点吗?为什么?

来源:2018年江苏省常州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° BC = 6 AC = 8 ,分别以点 A B 为圆心,大于线段 AB 长度一半的长为半径作弧,相交于点 E F ,过点 E F 作直线 EF ,交 AB 于点 D ,连接 CD ,则 CD 的长是  

来源:2016年浙江省湖州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° ,点 D AB 边的中点,连接 CD ,若 BC = 4 CD = 3 ,则 cos DCB 的值为   

来源:2020年山东省菏泽市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图, Rt Δ ABC 中, ABC = 90 ° D AC 的中点,若 C = 55 ° ,则 ABD =    °

来源:2018年江苏省徐州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, CD = 2 AD BE AD 于点 E F DC 的中点,连接 EF BF ,下列结论:① ABC = 2 ABF ;② EF = BF ;③ S 四边形DEBC = 2 S ΔEFB ;④ CFE = 3 DEF ,其中正确结论的个数共有 (    )

A.1个B.2个C.3个D.4个

来源:2018年四川省眉山市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形, ACB ECD 恰好为对顶角, ABC = CDE = 90 ° ,连接 BD AB = BD ,点 F 是线段 CE 上一点.

探究发现:

(1)当点 F 为线段 CE 的中点时,连接 DF (如图(2) ) ,小明经过探究,得到结论: BD DF .你认为此结论是否成立?    .(填"是"或"否" )

拓展延伸:

(2)将(1)中的条件与结论互换,即: BD DF ,则点 F 为线段 CE 的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.

问题解决:

(3)若 AB = 6 CE = 9 ,求 AD 的长.

来源:2020年山东省泰安市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是边长为6的正方形,点 E 在边 AB 上, BE = 4 ,过点 E EF / / BC ,分别交 BD CD G F 两点.若 M N 分别是 DG CE 的中点,则 MN 的长为 (    )

A.3B. 2 3 C. 13 D.4

来源:2017年浙江省宁波市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° A = 30 ° AB = 4 CD AB 于点 D E AB 的中点,则 DE 的长为 (    )

A.

1

B.

2

C.

3

D.

4

来源:2021年新疆生产建设兵团中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

已知:如图,在 Rt Δ ABC 中, ACB = 90 ° ,点 M 是斜边 AB 的中点, MD / / BC ,且 MD = CM DE AB 于点 E ,连接 AD CD

(1)求证: ΔMED ΔBCA

(2)求证: ΔAMD ΔCMD

(3)设 ΔMDE 的面积为 S 1 ,四边形 BCMD 的面积为 S 2 ,当 S 2 = 17 5 S 1 时,求 cos ABC 的值.

来源:2018年四川省资阳市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° CD 为中线,延长 CB 至点 E ,使 BE = BC ,连结 DE F DE 中点,连结 BF .若 AC = 8 BC = 6 ,则 BF 的长为 (    )

A.2B.2.5C.3D.4

来源:2020年浙江省宁波市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,把含 30 ° 的直角三角板 PMN 放置在正方形 ABCD 中, PMN = 30 ° ,直角顶点 P 在正方形 ABCD 的对角线 BD 上,点 M N 分别在 AB CD 边上, MN BD 交于点 O ,且点 O MN 的中点,则 AMP 的度数为 (    )

A.

60 °

B.

65 °

C.

75 °

D.

80 °

来源:2021年重庆市中考数学试卷(B卷)
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° ,点 D 、点 E 分别是边 AB AC 的中点,点 F AB 上,且 EF / / CD .若 EF = 2 ,则 AB =   

来源:2018年四川省巴中市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,点 E 是矩形 ABCD AD 上一点,点 F G H 分别是 BE BC CE 的中点, AF = 3 ,则 GH 的长为   

来源:2021年四川省南充市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图, Rt Δ ABC 中, ACB = 90 ° ,顶点 A B 都在反比例函数 y = k x ( x > 0 ) 的图象上,直线 AC x 轴,垂足为 D ,连结 OA OC ,并延长 OC AB 于点 E ,当 AB = 2 OA 时,点 E 恰为 AB 的中点,若 AOD = 45 ° OA = 2 2

(1)求反比例函数的解析式;

(2)求 EOD 的度数.

来源:2020年江西省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, BC = 2 BAC = 30 ° ,斜边 AB 的两个端点分别在相互垂直的射线 OM ON 上滑动,下列结论:

①若 C O 两点关于 AB 对称,则 OA = 2 3

C O 两点距离的最大值为4;

③若 AB 平分 CO ,则 AB CO

④斜边 AB 的中点 D 运动路径的长为 π 2

其中正确的是       (把你认为正确结论的序号都填上).

来源:2017年湖北省咸宁市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

初中数学直角三角形斜边上的中线试题