(1)如图1,已知 垂直平分 ,垂足为 , 与 相交于点 ,连接 .求证: .
(2)如图2,在 中, , 为 的中点.
①用直尺和圆规在 边上求作点 ,使得 (保留作图痕迹,不要求写作法);
②在①的条件下,如果 ,那么 是 的中点吗?为什么?
如图,在 中, , , ,分别以点 , 为圆心,大于线段 长度一半的长为半径作弧,相交于点 , ,过点 , 作直线 ,交 于点 ,连接 ,则 的长是 .
如图,在 中, , 于点 , 为 的中点,连接 、 ,下列结论:① ;② ;③ ;④ ,其中正确结论的个数共有
A.1个B.2个C.3个D.4个
小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形, 与 恰好为对顶角, ,连接 , ,点 是线段 上一点.
探究发现:
(1)当点 为线段 的中点时,连接 (如图(2) ,小明经过探究,得到结论: .你认为此结论是否成立? .(填"是"或"否"
拓展延伸:
(2)将(1)中的条件与结论互换,即: ,则点 为线段 的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.
问题解决:
(3)若 , ,求 的长.
如图,四边形 是边长为6的正方形,点 在边 上, ,过点 作 ,分别交 , 于 , 两点.若 , 分别是 , 的中点,则 的长为
A.3B. C. D.4
如图,在 中, , , , 于点 , 是 的中点,则 的长为
A. |
1 |
B. |
2 |
C. |
3 |
D. |
4 |
已知:如图,在 中, ,点 是斜边 的中点, ,且 , 于点 ,连接 、 .
(1)求证: ;
(2)求证: ;
(3)设 的面积为 ,四边形 的面积为 ,当 时,求 的值.
如图,在 中, , 为中线,延长 至点 ,使 ,连结 , 为 中点,连结 .若 , ,则 的长为
A.2B.2.5C.3D.4
如图,把含 的直角三角板 放置在正方形 中, ,直角顶点 在正方形 的对角线 上,点 , 分别在 和 边上, 与 交于点 ,且点 为 的中点,则 的度数为
A. |
|
B. |
|
C. |
|
D. |
|
如图, 中, ,顶点 , 都在反比例函数 的图象上,直线 轴,垂足为 ,连结 , ,并延长 交 于点 ,当 时,点 恰为 的中点,若 , .
(1)求反比例函数的解析式;
(2)求 的度数.