在 中, , ,将 绕点 按顺时针方向旋转,得到 ,旋转角为 ,点 的对应点为点 ,点 的对应点为点 ,连接 , .
(1)如图,当 时,延长 交 于点 .
①求证: 是等边三角形;
②求证: , ;
③请直接写出 的长;
(2)在旋转过程中,过点 作 垂直于直线 ,垂足为点 ,连接 ,当 ,且线段 与线段 无公共点时,请直接写出 的值.
温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.
如图,在正方形 中,点 为对角线 上的一点,连接 , .
(1)如图1,求证: ;
(2)如图2,延长 交直线 于点 , 在直线 上,且 .
①求证: ;
②已知正方形 的边长为2,若点 在对角线 上移动,当 为等边三角形时,求线段 的长(直接写出结果,不必写出解答过程).
在四边形 中, ,对角线 平分 .
(1)如图1,若 ,且 ,试探究边 、 与对角线 的数量关系并说明理由.
(2)如图2,若将(1)中的条件“ ”去掉,(1)中的结论是否成立?请说明理由.
(3)如图3,若 ,探究边 、 与对角线 的数量关系并说明理由.
【操作发现】
(1)如图1, 为等边三角形,先将三角板中的 角与 重合,再将三角板绕点 按顺时针方向旋转(旋转角大于 且小于 ,旋转后三角板的一直角边与 交于点 ,在三角板斜边上取一点 ,使 ,线段 上取点 ,使 ,连接 , .
①求 的度数;
② 与 相等吗?请说明理由;
【类比探究】
(2)如图2, 为等腰直角三角形, ,先将三角板的 角与 重合,再将三角板绕点 按顺时针方向旋转(旋转角大于 且小于 ,旋转后三角板的一直角边与 交于点 ,在三角板另一直角边上取一点 ,使 ,线段 上取点 ,使 ,连接 , .请直接写出探究结果:
① 的度数;
②线段 , , 之间的数量关系.
已知: 和 按如图所示方式放置,点 在 内,连接 、 和 ,且 .
(1)如图①,当 和 均为等边三角形时,试确定 、 、 三条线段的关系,并说明理由;
(2)如图②,当 , 时,试确定 、 、 三条线段的关系,并说明理由;
(3)如图③,当 时,请直接写出 、 、 三条线段的关系.
如图1,在平面直角坐标系中,直线 分别与 轴、 轴交于点 , , ,等边 的顶点 与原点 重合, 边落在 轴正半轴上,点 恰好落在线段 上,将等边 从图1的位置沿 轴正方向以每秒1个单位长度的速度平移,边 , 分别与线段 交于点 , (如图2所示),设 平移的时间为 .
(1)等边 的边长为 ;
(2)在运动过程中,当 时, 垂直平分 ;
(3)若在 开始平移的同时.点 从 的顶点 出发.以每秒2个单位长度的速度沿折线 运动.当点 运动到 时即停止运动. 也随之停止平移.
①当点 在线段 上运动时,若 与 相似.求 的值;
②当点 在线段 上运动时,设 ,求 与 的函数关系式,并求出 的最大值及此时点 的坐标.
已知: 是等边三角形,点 在直线 上,连接 ,以 为边作等边三角形 ,将线段 绕点 顺时针旋转 ,得到线段 ,连接 、 、 .
(1)如图1,当点 在线段 上时,求证: ;
(2)如图1,当点 在线段 上时,求证:四边形 是平行四边形;
(3)如图2,当点 在线段 延长线上时,四边形 还是平行四边形吗?如果是,请证明你的结论;如果不是,请说明理由.
如图,在 中, , , .动点 从 点出发,沿 方向以每秒5个单位长度的速度向 点匀速运动,动点 从 点同时出发,以相同的速度沿 方向向 点匀速运动,当点 运动到 点时, 、 两点同时停止运动,以 为边作正 、 、 按逆时针排序),以 为边在 上方作正 ,设点 运动时间为 秒.
(1)求 的值;
(2)当 与 的面积满足 时,求 的值;
(3)当 为何值时, 的某个顶点 点除外)落在 的边上.
已知: 和 均为等边三角形,连接 , ,点 , , 分别为 , , 中点.
(1)当 绕点 旋转时,如图1,则 的形状为 ,说明理由;
(2)在 旋转的过程中,当 , , 三点共线时,如图2,若 , ,求线段 的长;
(3)在 旋转的过程中,若 , ,则 的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.
如图, 和 都是等边三角形,点 、 、 三点在同一直线上,连接 , , 交 于点 .
(1)若 ,求证: ;
(2)若 , .
①求 的值;②求 的长.
【发现】如图①,已知等边 ,将直角三角板的 角顶点 任意放在 边上(点 不与点 、 重合),使两边分别交线段 、 于点 、 .
(1)若 , , ,则 ;
(2)求证: .
【思考】若将图①中的三角板的顶点 在 边上移动,保持三角板与边 、 的两个交点 、 都存在,连接 ,如图②所示,问:点 是否存在某一位置,使 平分 且 平分 ?若存在,求出 的值;若不存在,请说明理由.
【探索】如图③,在等腰 中, ,点 为 边的中点,将三角形透明纸板的一个顶点放在点 处(其中 ,使两条边分别交边 、 于点 、 (点 、 均不与 的顶点重合),连接 .设 ,则 与 的周长之比为 (用含 的表达式表示).
菱形 中、 ,点 为射线 上的动点,作射线 与直线 相交于点 ,将射线 绕点 逆时针旋转 ,得到射线 ,射线 与直线 相交于点 .
(1)如图①,点 与点 重合时,点 , 分别在线段 , 上,请直接写出 , , 三条段段之间的数量关系;
(2)如图②,点 在 的延长线上,且 , , 分别在线段 的延长线和线段 的延长线上,请写出 , , 三条线段之间的数量关系,并说明理由;
(3)点 在线段 上,若 , ,当 时,请直接写出 的长.
如图①,在四边形 中, 于点 , ,点 为 中点, 为线段 上的点,且 .
(1)求证: 平分 ;
(2)若 ,连接 ,当四边形 为平行四边形时,求线段 的长;
(3)如图②,若点 为 的中点,连接 、 ,求证: .
如图,点 、 分别是等边 边 、 上的动点(端点除外),点 、点 以相同的速度,同时从点 、点 出发.
(1)如图1,连接 、 .求证: ;
(2)如图1,当点 、 分别在 、 边上运动时, 、 相交于点 , 的大小是否变化?若变化,请说明理由;若不变,求出它的度数;
(3)如图2,当点 、 在 、 的延长线上运动时,直线 、 相交于 , 的大小是否变化?若变化,请说明理由;若不变,求出它的度数.