如图, 是正方形 的一条对角线, 是 上一点, 是 延长线上一点,连接 , , .若 , ,则 的度数为 .
如图,矩形 中,点 为 上一点, 为 的中点,且 .
(1)当 为 中点时,求证: ;
(2)当 时,求 的值;
(3)设 , ,作点 关于 的对称点 ,连接 , ,若点 到 的距离是 ,求 的值.
如图1,的三个顶点、、分别落在抛物线的图象上,点的横坐标为,点的纵坐标为.(点在点的左侧)
(1)求点、的坐标;
(2)将绕点逆时针旋转得到△,抛物线经过、两点,已知点为抛物线的对称轴上一定点,且点恰好在以为直径的圆上,连接、,求△的面积;
(3)如图2,延长交抛物线于点,连接,在坐标轴上是否存在点,使得以、、为顶点的三角形与△相似.若存在,请求出点的坐标;若不存在,请说明理由.
如图一,在射线的一侧以为一条边作矩形,,,点是线段上一动点(不与点重合),连结,过点作的垂线交射线于点,连接.
(1)求的大小;
(2)问题探究:动点在运动的过程中,
①是否能使为等腰三角形,如果能,求出线段的长度;如果不能,请说明理由.
②的大小是否改变?若不改变,请求出的大小;若改变,请说明理由.
(3)问题解决:
如图二,当动点运动到的中点时,与的交点为,的中点为,求线段的长度.
如图,在等边中,,动点从点出发以的速度沿匀速运动.动点同时从点出发以同样的速度沿的延长线方向匀速运动,当点到达点时,点、同时停止运动.设运动时间为.过点作于,连接交边于.以、为边作平行四边形.
(1)当为何值时,为直角三角形;
(2)是否存在某一时刻,使点在的平分线上?若存在,求出的值,若不存在,请说明理由;
(3)求的长;
(4)取线段的中点,连接,将沿直线翻折,得△,连接,当为何值时,的值最小?并求出最小值.
在等腰三角形中,,作交于点,交于点.
(1)在图1中,求证:;
(2)在图2中的线段上取一动点,过作交于点,作交于点,求证:;
(3)在图3中动点在线段的延长线上,类似(2)过作交的延长线于点,作交的延长线于点,求证:.
如图,在正方形 中, , 是对角线 上的两点,且 ,连接 并延长交 于点 ,连接 并延长交 于点 ,连接 ,则
A. |
|
B. |
|
C. |
1 |
D. |
|
数学活动课上,某学习小组对有一内角为 的平行四边形 进行探究:将一块含 的直角三角板如图放置在平行四边形 所在平面内旋转,且 角的顶点始终与点 重合,较短的直角边和斜边所在的两直线分别交线段 , 于点 , (不包括线段的端点).
(1)初步尝试
如图1,若 ,求证:① ,② ;
(2)类比发现
如图2,若 ,过点 作 于点 ,求证: ;
(3)深入探究
如图3,若 ,探究得: 的值为常数 ,则 .
(1)方法选择
如图①,四边形是的内接四边形,连接,,.求证:.
小颖认为可用截长法证明:在上截取,连接
小军认为可用补短法证明:延长至点,使得
请你选择一种方法证明.
(2)类比探究
[探究1]
如图②,四边形是的内接四边形,连接,,是的直径,.试用等式表示线段,,之间的数量关系,并证明你的结论.
[探究2]
如图③,四边形是的内接四边形,连接,.若是的直径,,则线段,,之间的等量关系式是 .
(3)拓展猜想
如图④,四边形是的内接四边形,连接,.若是的直径,,则线段,,之间的等量关系式是 .
如图,已知 是等边三角形, 是 内部的一点,连接 , .
(1)如图1,以 为直径的半圆 交 于点 ,交 于点 ,当点 在 上时,连接 ,在 边的下方作 , ,连接 ,求 的度数;
(2)如图2, 是 边上一点,且 ,当 时,连接 并延长,交 于点 ,若 ,求证: ;
(3)如图3, 是 边上一点,当 时,连接 .若 , , , 的面积为 , 的面积为 ,求 的值(用含 的代数式表示).
问题解决:如图1,在矩形 中,点 , 分别在 , 边上, , 于点 .
(1)求证:四边形 是正方形;
(2)延长 到点 ,使得 ,判断 的形状,并说明理由.
类比迁移:如图2,在菱形 中,点 , 分别在 , 边上, 与 相交于点 , , , , ,求 的长.
在线段 的同侧作射线 和 ,若 与 的平分线分别交射线 , 于点 , , 和 交于点 .如图,点点同学发现当射线 , 交于点 ;且 时,有以下两个结论:
① ;② .
那么,当 时:
(1)点点发现的结论还成立吗?若成立,请给予证明;若不成立,请求出 的度数,写出 , , 长度之间的等量关系,并给予证明;
(2)设点 为线段 上一点, ,若 ,四边形 的面积为 ,求 的长.
如图,四边形是正方形,是等腰直角三角形,点在上,且,,垂足为点.
(1)试判断与是否相等?并给出证明;
(2)若点为的中点,与垂直吗?若垂直,给出证明;若不垂直,说明理由.
如图, 是正方形 的一条对角线, 是 上一点, 是 延长线上一点,连接 , , .若 , ,则 的度数为 .