初中数学

如图, BD 是正方形 ABCD 的一条对角线, E BD 上一点, F CB 延长线上一点,连接 CE EF AF .若 DE = DC EF = EC ,则 BAF 的度数为   

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中,点 E BC 上一点, F DE 的中点,且 BFC = 90 °

(1)当 E BC 中点时,求证: ΔBCF ΔDEC

(2)当 BE = 2 EC 时,求 CD BC 的值;

(3)设 CE = 1 BE = n ,作点 C 关于 DE 的对称点 C ' ,连接 FC ' AF ,若点 C ' AF 的距离是 2 10 5 ,求 n 的值.

来源:2016年浙江省丽水市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图1,的三个顶点分别落在抛物线的图象上,点的横坐标为,点的纵坐标为.(点在点的左侧)

(1)求点的坐标;

(2)将绕点逆时针旋转得到△,抛物线经过两点,已知点为抛物线的对称轴上一定点,且点恰好在以为直径的圆上,连接,求△的面积;

(3)如图2,延长交抛物线于点,连接,在坐标轴上是否存在点,使得以为顶点的三角形与△相似.若存在,请求出点的坐标;若不存在,请说明理由.

来源:2019年湖南省岳阳市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图一,在射线的一侧以为一条边作矩形,点是线段上一动点(不与点重合),连结,过点的垂线交射线于点,连接

(1)求的大小;

(2)问题探究:动点在运动的过程中,

①是否能使为等腰三角形,如果能,求出线段的长度;如果不能,请说明理由.

的大小是否改变?若不改变,请求出的大小;若改变,请说明理由.

(3)问题解决:

如图二,当动点运动到的中点时,的交点为的中点为,求线段的长度.

来源:2019年湖南省湘潭市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,在等边中,,动点从点出发以的速度沿匀速运动.动点同时从点出发以同样的速度沿的延长线方向匀速运动,当点到达点时,点同时停止运动.设运动时间为.过点,连接边于.以为边作平行四边形

(1)当为何值时,为直角三角形;

(2)是否存在某一时刻,使点的平分线上?若存在,求出的值,若不存在,请说明理由;

(3)求的长;

(4)取线段的中点,连接,将沿直线翻折,得△,连接,当为何值时,的值最小?并求出最小值.

来源:2019年湖南省衡阳市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

在等腰三角形中,,作于点于点

(1)在图1中,求证:

(2)在图2中的线段上取一动点,过于点,作于点,求证:

(3)在图3中动点在线段的延长线上,类似(2)过的延长线于点,作的延长线于点,求证:

来源:2019年湖南省常德市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中, E F 是对角线 AC 上的两点,且 EF = 2 AE = 2 CF ,连接 DE 并延长交 AB 于点 M ,连接 DF 并延长交 BC 于点 N ,连接 MN ,则 S ΔAMD S ΔMBN = (    )

A.

3 4

B.

2 3

C.

1

D.

1 2

来源:2021年广西贵港市中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

数学活动课上,某学习小组对有一内角为 120 ° 的平行四边形 ABCD ( BAD = 120 ° ) 进行探究:将一块含 60 ° 的直角三角板如图放置在平行四边形 ABCD 所在平面内旋转,且 60 ° 角的顶点始终与点 C 重合,较短的直角边和斜边所在的两直线分别交线段 AB AD 于点 E F (不包括线段的端点).

(1)初步尝试

如图1,若 AD = AB ,求证:① ΔBCE ΔACF ,② AE + AF = AC

(2)类比发现

如图2,若 AD = 2 AB ,过点 C CH AD 于点 H ,求证: AE = 2 FH

(3)深入探究

如图3,若 AD = 3 AB ,探究得: AE + 3 AF AC 的值为常数 t ,则 t =   

来源:2016年浙江省湖州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

(1)方法选择

如图①,四边形的内接四边形,连接.求证:

小颖认为可用截长法证明:在上截取,连接

小军认为可用补短法证明:延长至点,使得

请你选择一种方法证明.

(2)类比探究

[探究1]

如图②,四边形的内接四边形,连接的直径,.试用等式表示线段之间的数量关系,并证明你的结论.

[探究2]

如图③,四边形的内接四边形,连接.若的直径,,则线段之间的等量关系式是  

(3)拓展猜想

如图④,四边形的内接四边形,连接.若的直径,,则线段之间的等量关系式是  

来源:2019年山东省威海市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,已知 ΔABC 是等边三角形, P ΔABC 内部的一点,连接 BP CP

(1)如图1,以 BC 为直径的半圆 O AB 于点 Q ,交 AC 于点 R ,当点 P QR ̂ 上时,连接 AP ,在 BC 边的下方作 BCD = BAP CD = AP ,连接 DP ,求 CPD 的度数;

(2)如图2, E BC 边上一点,且 EC = 3 BE ,当 BP = CP 时,连接 EP 并延长,交 AC 于点 F ,若 7 AB = 4 BP ,求证: 4 EF = 3 AB

(3)如图3, M AC 边上一点,当 AM = 2 MC 时,连接 MP .若 CMP = 150 ° AB = 6 a MP = 3 a ΔABC 的面积为 S 1 ΔBCP 的面积为 S 2 ,求 S 1 S 2 的值(用含 a 的代数式表示).

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

问题解决:如图1,在矩形 ABCD 中,点 E F 分别在 AB BC 边上, DE = AF DE AF 于点 G

(1)求证:四边形 ABCD 是正方形;

(2)延长 CB 到点 H ,使得 BH = AE ,判断 ΔAHF 的形状,并说明理由.

类比迁移:如图2,在菱形 ABCD 中,点 E F 分别在 AB BC 边上, DE AF 相交于点 G DE = AF AED = 60 ° AE = 6 BF = 2 ,求 DE 的长.

来源:2021年甘肃省武威市中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

在线段 AB 的同侧作射线 AM BN ,若 MAB NBA 的平分线分别交射线 BN AM 于点 E F AE BF 交于点 P .如图,点点同学发现当射线 AM BN 交于点 C ;且 ACB = 60 ° 时,有以下两个结论:

APB = 120 ° ;② AF + BE = AB

那么,当 AM / / BN 时:

(1)点点发现的结论还成立吗?若成立,请给予证明;若不成立,请求出 APB 的度数,写出 AF BE AB 长度之间的等量关系,并给予证明;

(2)设点 Q 为线段 AE 上一点, QB = 5 ,若 AF + BE = 16 ,四边形 ABEF 的面积为 32 3 ,求 AQ 的长.

来源:2016年浙江省杭州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,四边形是正方形,是等腰直角三角形,点上,且,垂足为点

(1)试判断是否相等?并给出证明;

(2)若点的中点,垂直吗?若垂直,给出证明;若不垂直,说明理由.

来源:2019年山东省泰安市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图, BD 是正方形 ABCD 的一条对角线, E BD 上一点, F CB 延长线上一点,连接 CE EF AF .若 DE = DC EF = EC ,则 BAF 的度数为   

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中, E F 为边 AB 上的两个三等分点,点 A 关于 DE 的对称点为 A ' AA ' 的延长线交 BC 于点 G

(1)求证: DE / / A ' F

(2)求 GA ' B 的大小;

(3)求证: A ' C = 2 A ' B

来源:2021年福建省中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

初中数学全等三角形的判定与性质试题