如图,已知是的直径,,为圆上一点,且,连接,,,与交于点.
(1)求证:为的切线;
(2)若,求的值.
如图,在 中, , ,点 为 中点,点 为直线 上的动点(不与点 、点 重合),连接 、 ,将线段 绕点 顺时针旋转 ,得到线段 ,连接 .
(1)如图1,当点 在线段 上时,请直接写出线段 与 的数量关系.
(2)如图2,当点 在 延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;
(3)如图3,当点 在 延长线上时,若 , ,请求出 的长
如图,在正方形 中, 、 分别是 、 上的点,且 , 、 分别交 于 、 ,连接 、 ,有以下结论:
①
②当 时,
③
④存在点 、 ,使得
其中正确的个数是
A. |
1 |
B. |
2 |
C. |
3 |
D. |
4 |
(年云南省)如图,在矩形ABCD中,AB=4,AD=6,M,N分别是AB,CD的中点,P是AD上的点,且∠PNB=3∠CBN.
(1)求证:∠PNM=2∠CBN;
(2)求线段AP的长.
(年贵州省贵阳市)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FO⊥AB,垂足为点O,连接AF并延长交⊙O于点D,连接OD交BC于点E,∠B=30°,FO=.
(1)求AC的长度;
(2)求图中阴影部分的面积.(计算结果保留根号)
已知:如图,四边形中,,,是对角线上一点,且.
(1)求证:四边形是菱形;
(2)如果,且,求证:四边形是正方形.
如图,在平行四边形中,点在边上,连接,,垂足为,交于点,,垂足为,,垂足为,交于点,点是上一点,连接.
(1)若,,,求的面积.
(2)若,,求证:.
如图,在正方形中,点是边上一点,以为边作正方形,与交于点,延长交于点,与交于点,连接.
(1)求证:;
(2)若,求的值;
(3)已知正方形的边长为1,点在运动过程中,的长能否为?请说明理由.
(1)如图1,是正方形边上的一点,连接、,将绕点逆时针旋转,旋转后角的两边分别与射线交于点和点.
①线段和的数量关系是 ;
②写出线段,和之间的数量关系.
(2)当四边形为菱形,,点是菱形边所在直线上的一点,连接、,将绕点逆时针旋转,旋转后角的两边分别与射线交于点和点.
①如图2,点在线段上时,请探究线段、和之间的数量关系,写出结论并给出证明;
②如图3,点在线段的延长线上时,交射线于点,若,,直接写出线段的长度.
如图,点 在矩形 的对角线 上,且不与点 , 重合,过点 分别作边 , 的平行线,交两组对边于点 , 和 , .
(1)求证: ;
(2)证明四边形 和四边形 都是矩形,并直接写出它们面积之间的关系.
如图,在 中,以点 为圆心, 长为半径画弧交 于点 ,再分别以点 、 为圆心,大于 的相同长为半径画弧,两弧交于点 ;连接 并延长交 于点 ,连接 ,则所得四边形 是菱形.
(1)根据以上尺规作图的过程,求证:四边形 是菱形;
(2)若菱形 的周长为16, ,求 的大小.