如图,已知 ΔABC 是等边三角形, P 是 ΔABC 内部的一点,连接 BP , CP .
(1)如图1,以 BC 为直径的半圆 O 交 AB 于点 Q ,交 AC 于点 R ,当点 P 在 QR ̂ 上时,连接 AP ,在 BC 边的下方作 ∠ BCD = ∠ BAP , CD = AP ,连接 DP ,求 ∠ CPD 的度数;
(2)如图2, E 是 BC 边上一点,且 EC = 3 BE ,当 BP = CP 时,连接 EP 并延长,交 AC 于点 F ,若 7 AB = 4 BP ,求证: 4 EF = 3 AB ;
(3)如图3, M 是 AC 边上一点,当 AM = 2 MC 时,连接 MP .若 ∠ CMP = 150 ° , AB = 6 a , MP = 3 a , ΔABC 的面积为 S 1 , ΔBCP 的面积为 S 2 ,求 S 1 − S 2 的值(用含 a 的代数式表示).
已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC. (1)求证:BD是⊙O的切线; (2)求证:; (3)若⊙O的半径为5,sinA=,求BH的长.
如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60°方向前进实施拦截,红方行驶1000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方,求拦截点D处到公路的距离(结果不取近似值).
为了了解江城中学学生的身高情况,随机对该校男生、女生的身高进行抽样调查,已知抽取的样本中,男生、女生的人数相同,根据所得数据绘制成如图所示的统计图表. 根据图表中信息,回答下列问题: (1)在样本中,男生身高的中位数落在组(填组别序号),女生身高在B组的人数有人; (2)在样本中,身高在150≤x<155之间的人数共有人,身高人数最多的在组(填组别序号); (3)已知该校共有男生500人,女生480人,请估计身高在155≤x<160之间的学生约有多少人?
已知,如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE,AC平分∠BAD.求证:四边形ABCD为菱形.
先化简,再求值:,其中,.