初中数学

已知:如图,点 A D C B 在同一条直线上, AD = BC AE = BF CE = DF ,求证: AE / / FB

来源:2018年贵州省铜仁市中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

如图, CE O 的直径, BC O 于点 C ,连接 OB ,作 ED / / OB O 于点 D BD 的延长线与 CE 的延长线交于点 A

(1)求证: AB O 的切线;

(2)若 O 的半径为1, tan DEO = 2 ,求 AE 的长.

来源:2018年贵州省黔东南州中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系 xOy 中,点 A 是反比例函数 y = m 3 m 2 x ( x > 0 , m > 1 ) 图象上一点,点 A 的横坐标为 m ,点 B ( 0 , m ) y 轴负半轴上的一点,连接 AB AC AB ,交 y 轴于点 C ,延长 CA 到点 D ,使得 AD = AC ,过点 A AE 平行于 x 轴,过点 D y 轴平行线交 AE 于点 E

(1)当 m = 3 时,求点 A 的坐标;

(2) DE =   ,设点 D 的坐标为 ( x , y ) ,求 y 关于 x 的函数关系式和自变量的取值范围;

(3)连接 BD ,过点 A BD 的平行线,与(2)中的函数图象交于点 F ,当 m 为何值时,以 A B D F 为顶点的四边形是平行四边形?

来源:2018年贵州省贵阳市中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = = 2 AD = 3 P BC 边上的一点,且 BP = 2 CP

(1)用尺规在图①中作出 CD 边上的中点 E ,连接 AE BE (保留作图痕迹,不写作法);

(2)如图②,在(1)的条件下,判断 EB 是否平分 AEC ,并说明理由;

(3)如图③,在(2)的条件下,连接 EP 并延长交 AB 的延长线于点 F ,连接 AP ,不添加辅助线, ΔPFB 能否由都经过 P 点的两次变换与 ΔPAE 组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)

来源:2018年贵州省贵阳市中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

如图,在平行四边形 ABCD 中, AE BC 边上的高,点 F DE 的中点, AB AG 关于 AE 对称, AE AF 关于 AG 对称.

(1)求证: ΔAEF 是等边三角形;

(2)若 AB = 2 ,求 ΔAFD 的面积.

来源:2018年贵州省贵阳市中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

如图,在平行四边形 ABCD 中, P 是对角线 BD 上的一点,过点 C CQ / / DB ,且 CQ = DP ,连接 AP BQ PQ

(1)求证: ΔAPD ΔBQC

(2)若 ABP + BQC = 180 ° ,求证:四边形 ABQP 为菱形.

来源:2018年贵州省毕节市中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC O BC 的中点, AC 与半圆 O 相切于点 D

(1)求证: AB 是半圆 O 所在圆的切线;

(2)若 cos ABC = 2 3 AB = 12 ,求半圆 O 所在圆的半径.

来源:2018年贵州省安顺市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AD BC 边上的中线, E AD 的中点,过点 A BC 的平行线交 BE 的延长线于点 F ,连接 CF

(1)求证: AF = DC

(2)若 AC AB ,试判断四边形 ADCF 的形状,并证明你的结论.

来源:2018年贵州省安顺市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

边长为 2 2 的正方形 ABCD 中, P 是对角线 AC 上的一个动点(点 P A C 不重合),连接 BP ,将 BP 绕点 B 顺时针旋转 90 ° BQ ,连接 QP QP BC 交于点 E QP 延长线与 AD (或 AD 延长线)交于点 F

(1)连接 CQ ,证明: CQ = AP

(2)设 AP = x CE = y ,试写出 y 关于 x 的函数关系式,并求当 x 为何值时, CE = 3 8 BC

(3)猜想 PF EQ 的数量关系,并证明你的结论.

来源:2017年贵州省遵义市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图,已知点 E F 分别是平行四边形 ABCD 对角线 BD 所在直线上的两点,连接 AE CF ,请你添加一个条件,使得 ΔABE ΔCDF ,并证明.

来源:2017年贵州省铜仁市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图,在等腰直角三角形 ABC 中, ACB = 90 ° AC = BC = 4 D AB 的中点, E F 分别是 AC BC 上的点(点 E 不与端点 A C 重合),且 AE = CF ,连接 EF 并取 EF 的中点 O ,连接 DO 并延长至点 G ,使 GO = OD ,连接 DE DF GE GF

(1)求证:四边形 EDFG 是正方形;

(2)当点 E 在什么位置时,四边形 EDFG 的面积最小?并求四边形 EDFG 面积的最小值.

来源:2017年广西玉林市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, AC 是上半圆的弦,过点 C O 的切线 DE AB 的延长线于点 E ,过点 A 作切线 DE 的垂线,垂足为 D ,且与 O 交于点 F ,设 DAC CEA 的度数分别是 α β

(1)用含 α 的代数式表示 β ,并直接写出 α 的取值范围;

(2)连接 OF AC 交于点 O ' ,当点 O ' AC 的中点时,求 α β 的值.

来源:2017年广西玉林市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

(1)阅读理解:如图①,在四边形 ABCD 中, AB / / DC E BC 的中点,若 AE BAD 的平分线,试判断 AB AD DC 之间的等量关系.

解决此问题可以用如下方法:延长 AE DC 的延长线于点 F ,易证 ΔAEB ΔFEC ,得到 AB = FC ,从而把 AB AD DC 转化在一个三角形中即可判断.

AB AD DC 之间的等量关系为  

(2)问题探究:如图②,在四边形 ABCD 中, AB / / DC AF DC 的延长线交于点 F E BC 的中点,若 AE BAF 的平分线,试探究 AB AF CF 之间的等量关系,并证明你的结论.

(3)问题解决:如图③, AB / / CF AE BC 交于点 E BE : EC = 2 : 3 ,点 D 在线段 AE 上,且 EDF = BAE ,试判断 AB DF CF 之间的数量关系,并证明你的结论.

来源:2017年贵州省贵阳市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° ,点 D E 分别是边 BC AB 上的中点,连接 DE 并延长至点 F ,使 EF = 2 DE ,连接 CE AF

(1)证明: AF = CE

(2)当 B = 30 ° 时,试判断四边形 ACEF 的形状并说明理由.

来源:2017年贵州省贵阳市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图, ΔABC 中, BAC = 120 ° AB = AC = 6 P 是底边 BC 上的一个动点 ( P B C 不重合),以 P 为圆心, PB 为半径的 P 与射线 BA 交于点 D ,射线 PD 交射线 CA 于点 E

(1)若点 E 在线段 CA 的延长线上,设 BP = x AE = y ,求 y 关于 x 的函数关系式,并写出 x 的取值范围.

(2)当 BP = 2 3 时,试说明射线 CA P 是否相切.

(3)连接 PA ,若 S ΔAPE = 1 8 S ΔABC ,求 BP 的长.

来源:2016年贵州省遵义市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

初中数学三角形解答题