如图, 是 的直径, 切 于点 ,连接 ,作 交 于点 , 的延长线与 的延长线交于点 .
(1)求证: 是 的切线;
(2)若 的半径为1, ,求 的长.
如图,在平面直角坐标系 中,点 是反比例函数 图象上一点,点 的横坐标为 ,点 是 轴负半轴上的一点,连接 , ,交 轴于点 ,延长 到点 ,使得 ,过点 作 平行于 轴,过点 作 轴平行线交 于点 .
(1)当 时,求点 的坐标;
(2) ,设点 的坐标为 ,求 关于 的函数关系式和自变量的取值范围;
(3)连接 ,过点 作 的平行线,与(2)中的函数图象交于点 ,当 为何值时,以 、 、 、 为顶点的四边形是平行四边形?
如图,在矩形 中, , , 是 边上的一点,且 .
(1)用尺规在图①中作出 边上的中点 ,连接 、 (保留作图痕迹,不写作法);
(2)如图②,在(1)的条件下,判断 是否平分 ,并说明理由;
(3)如图③,在(2)的条件下,连接 并延长交 的延长线于点 ,连接 ,不添加辅助线, 能否由都经过 点的两次变换与 组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)
如图,在平行四边形 中, 是 边上的高,点 是 的中点, 与 关于 对称, 与 关于 对称.
(1)求证: 是等边三角形;
(2)若 ,求 的面积.
如图,在平行四边形 中, 是对角线 上的一点,过点 作 ,且 ,连接 、 、 .
(1)求证: ;
(2)若 ,求证:四边形 为菱形.
如图,在 中, , 为 的中点, 与半圆 相切于点 .
(1)求证: 是半圆 所在圆的切线;
(2)若 , ,求半圆 所在圆的半径.
如图,在 中, 是 边上的中线, 是 的中点,过点 作 的平行线交 的延长线于点 ,连接 .
(1)求证: ;
(2)若 ,试判断四边形 的形状,并证明你的结论.
边长为 的正方形 中, 是对角线 上的一个动点(点 与 、 不重合),连接 ,将 绕点 顺时针旋转 到 ,连接 , 与 交于点 , 延长线与 (或 延长线)交于点 .
(1)连接 ,证明: ;
(2)设 , ,试写出 关于 的函数关系式,并求当 为何值时, ;
(3)猜想 与 的数量关系,并证明你的结论.
如图,已知点 , 分别是平行四边形 对角线 所在直线上的两点,连接 , ,请你添加一个条件,使得 ,并证明.
如图,在等腰直角三角形 中, , , 是 的中点, , 分别是 , 上的点(点 不与端点 , 重合),且 ,连接 并取 的中点 ,连接 并延长至点 ,使 ,连接 , , , .
(1)求证:四边形 是正方形;
(2)当点 在什么位置时,四边形 的面积最小?并求四边形 面积的最小值.
如图, 是 的直径, 是上半圆的弦,过点 作 的切线 交 的延长线于点 ,过点 作切线 的垂线,垂足为 ,且与 交于点 ,设 , 的度数分别是 , .
(1)用含 的代数式表示 ,并直接写出 的取值范围;
(2)连接 与 交于点 ,当点 是 的中点时,求 , 的值.
(1)阅读理解:如图①,在四边形 中, , 是 的中点,若 是 的平分线,试判断 , , 之间的等量关系.
解决此问题可以用如下方法:延长 交 的延长线于点 ,易证 ,得到 ,从而把 , , 转化在一个三角形中即可判断.
、 、 之间的等量关系为 ;
(2)问题探究:如图②,在四边形 中, , 与 的延长线交于点 , 是 的中点,若 是 的平分线,试探究 , , 之间的等量关系,并证明你的结论.
(3)问题解决:如图③, , 与 交于点 , ,点 在线段 上,且 ,试判断 、 、 之间的数量关系,并证明你的结论.
如图,在 中, ,点 , 分别是边 , 上的中点,连接 并延长至点 ,使 ,连接 、 .
(1)证明: ;
(2)当 时,试判断四边形 的形状并说明理由.