如图,矩形 中,延长 至 ,延长 至 , ,连接 ,与 、 分别相交于 、 两点.
(1)求证: ;
(2)若 , , ,求矩形 的面积.
如图, 中, , . 是底边 上的一个动点 与 、 不重合),以 为圆心, 为半径的 与射线 交于点 ,射线 交射线 于点 .
(1)若点 在线段 的延长线上,设 , ,求 关于 的函数关系式,并写出 的取值范围.
(2)当 时,试说明射线 与 是否相切.
(3)连接 ,若 ,求 的长.
如图,矩形 中,延长 至 ,延长 至 , ,连接 ,与 、 分别相交于 、 两点.
(1)求证: ;
(2)若 , , ,求矩形 的面积.
如图,已知 是 的直径,点 为圆上一点,点 为 延长线上一点, , .
(1)求证: 是 的切线.
(2)若 的直径为8,求阴影部分的面积.
如图,点 是 直径 延长线上的一点, 在 上, ,
(1)求证: 是 的切线;
(2)若 的半径为2,求 的面积.
在 中, , , ,若 ,如图1,则有 ;若 为锐角三角形时,小明猜想: ,理由如下:如图2,过点 作 于点 ,设 .在 中, ,在 中,
,
当 为锐角三角形时,
所以小明的猜想是正确的.
(1)请你猜想,当 为钝角三角形时, 与 的大小关系.
(2)温馨提示:在图3中,作 边上的高.
(3)证明你猜想的结论是否正确.
(1)阅读理解:
如图①,在 中,若 , ,求 边上的中线 的取值范围.
解决此问题可以用如下方法:延长 到点 使 ,再连接 (或将 绕着点 逆时针旋转 得到 ,把 、 , 集中在 中,利用三角形三边的关系即可判断.
中线 的取值范围是 ;
(2)问题解决:
如图②,在 中, 是 边上的中点, 于点 , 交 于点 , 交 于点 ,连接 ,求证: ;
(3)问题拓展:
如图③,在四边形 中, , , ,以 为顶点作一个 角,角的两边分别交 , 于 、 两点,连接 ,探索线段 , , 之间的数量关系,并加以证明.
如图,点 正方形 外一点,点 是线段 上一点, 是等腰直角三角形,其中 ,连接 、 .
(1)求证: ;
(2)判断 的形状,并说明理由.
如图,在 中, 为 上一点,且 ,以 为直径作 ,交 于点 ,连接 ,过 作 于点 , .
(1)求证: 是 的切线;
(2)若 , ,求 的直径 的长.
如图,已知 中, ,把 绕 点沿顺时针方向旋转得到 ,连接 , 交于点 .
(1)求证: ;
(2)若 , ,当四边形 是菱形时,求 的长.
如图,在 中, ,点 、 分别是 、 的中点.
(1)求证: ;
(2)当四边形 为菱形时,求出该菱形的面积.
已知: 和 均为等腰直角三角形, .连接 , ,点 为 中点,连接 .
(1)如图1所示,易证: 且
(2)将 绕点 旋转到图2,图3所示位置时,线段 与 又有怎样的关系,并选择一个图形证明你的结论.
已知线段 直线 于点 ,点 在直线 上,分别以 、 为边作等边三角形 和等边三角形 ,直线 交直线 于点 .
(1)当点 在线段 上时,如图①,求证: ;
(2)当点 在线段 的延长线上时,如图②;当点 在线段 的延长线上时,如图③,请分别写出线段 、 、 之间的数量关系,在图②、图③中选一个进行证明;
(3)在(1)、(2)的条件下,若 , ,则 .