如图,点 E 正方形 ABCD 外一点,点 F 是线段 AE 上一点, ΔEBF 是等腰直角三角形,其中 ∠ EBF = 90 ° ,连接 CE 、 CF .
(1)求证: ΔABF ≅ ΔCBE ;
(2)判断 ΔCEF 的形状,并说明理由.
在下图的网格中有一个三角形OAB,请你在网格中分别按下列要求画出图形 ①画出向左平移3个单位后的三角形; ②画出绕点旋转180°后的三角形; ③画出沿y轴翻折后的图形.
解方程:3x-2=1-2(x+1)
化简并求值:9x+6x2-3(x-x2) ,其中x=-2.
甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象. (1)求出图中m,a的值; (2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围; (3)当乙车行驶多长时间时,两车恰好相距50km.
广安某水果点计划购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:
(1)若该水果店预计进货款为1000元,则这两种水果各购进多少千克? (2)若该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果点在销售完这批水果时获利最多?此时利润为多少元?