在 ΔABC 中, BC = a , AC = b , AB = c ,若 ∠ C = 90 ° ,如图1,则有 a 2 + b 2 = c 2 ;若 ΔABC 为锐角三角形时,小明猜想: a 2 + b 2 > c 2 ,理由如下:如图2,过点 A 作 AD ⊥ CB 于点 D ,设 CD = x .在 Rt Δ ADC 中, A D 2 = b 2 − x 2 ,在 Rt Δ ADB 中, A D 2 = c 2 − ( a − x ) 2
∴ a 2 + b 2 = c 2 + 2 ax
∵ a > 0 , x > 0
∴ 2 ax > 0
∴ a 2 + b 2 > c 2
∴ 当 ΔABC 为锐角三角形时, a 2 + b 2 > c 2
所以小明的猜想是正确的.
(1)请你猜想,当 ΔABC 为钝角三角形时, a 2 + b 2 与 c 2 的大小关系.
(2)温馨提示:在图3中,作 BC 边上的高.
(3)证明你猜想的结论是否正确.
七名学生的体重,以48.0㎏为标准,把超过标准体重的千克计记为正数,不足的千克记为负数,将其体重记录如下表:
(1)最接近标准体重的学生体重是多少? (2)求七名学生的平均体重; (3)按体重的轻重排列时,恰好居中的是那个学生?
﹣3﹣6+9﹣11+2.
淮海中学图书馆上周借书记录如下:(超过100册记为正,少于100册记为负).
(1)上星期五借出多少册书? (2)上星期四比上星期三多借出几册? (3)上周平均每天借出几册?
计算:﹣16+23+(﹣17)﹣(﹣7)