首页 / 初中数学 / 试题详细
  • 更新 2022-09-04
  • 科目 数学
  • 题型 解答题
  • 难度 中等
  • 浏览 95

ΔABC 中, BC = a AC = b AB = c ,若 C = 90 ° ,如图1,则有 a 2 + b 2 = c 2 ;若 ΔABC 为锐角三角形时,小明猜想: a 2 + b 2 > c 2 ,理由如下:如图2,过点 A AD CB 于点 D ,设 CD = x .在 Rt Δ ADC 中, A D 2 = b 2 x 2 ,在 Rt Δ ADB 中, A D 2 = c 2 ( a x ) 2

a 2 + b 2 = c 2 + 2 ax

a > 0 x > 0

2 ax > 0

a 2 + b 2 > c 2

ΔABC 为锐角三角形时, a 2 + b 2 > c 2

所以小明的猜想是正确的.

(1)请你猜想,当 ΔABC 为钝角三角形时, a 2 + b 2 c 2 的大小关系.

(2)温馨提示:在图3中,作 BC 边上的高.

(3)证明你猜想的结论是否正确.

登录免费查看答案和解析

在ΔABC中,BCa,ACb,ABc,若∠C90°,如图1,