如图,在 ΔABC 中, D 为 AC 上一点,且 CD = CB ,以 BC 为直径作 ⊙ O ,交 BD 于点 E ,连接 CE ,过 D 作 DF ⊥ AB 于点 F , ∠ BCD = 2 ∠ ABD .
(1)求证: AB 是 ⊙ O 的切线;
(2)若 ∠ A = 60 ° , DF = 3 ,求 ⊙ O 的直径 BC 的长.
.在数轴上把下列各数表示出来,并用“<”连接各数。(共4分),,,,,
(本题4分) 把下列各数填在相应的大括号里:,,0.86,,,0, 负整数集合:(…); 负分数集合:(…); 正分数集合:(…); 非负有理数集合(…)。
(本大题共6分)如图,在梯形ABCD中,AD//BC,∠B=90°,AB=14 cm,AD=18cm,BC=21cm,点P从点A出发沿AD边向点D以1 cm/s的速度移动,点Q从点C出发沿CB向点B以2 cm/s的速度移动,若点P、Q分别从点A、C同时出发,设移动时间为t s,则t为何值时,梯形PQCD是等腰梯形?
(本大题共6分)如图,在△ABC中,∠A=90°,AB=AC,O是BC的中点,如果在AB和AC上分别有一个动点M、N在移动,且在移动时保持AN=BM,请你判断△OMN的形状,并说明理由.
(本大题共6分)如图所示,在△ABC中,∠BAC=90°,AD⊥BC于D,∠ACB的平分线交AD于E,交AB于F,FG⊥BC于G,请猜测AE与FG之间有怎样的数量关系,并说明理由.