已知某开发区有一块四边形的空地ABCD,如图所示,现计划在该空地上种草皮,经测量,∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需200元,问:需要投入多少元?
如图,过原点的直线和与反比例函数的图象分别交于两点A,C和B,D,连结AB,BC,CD,DA. (1)四边形ABCD一定是 四边形;(直接填写结果) (2)四边形ABCD可能是矩形吗?若可能,试求此时和之间的关系式;若不可能,说明理由; (3)设P(,),Q(,)()是函数图象上的任意两点,,,试判断,的大小关系,并说明理由.
如图,直线经过点A(4,0),B(0,3). (1)求直线的函数表达式; (2)若圆M的半径为2,圆心M在轴上,当圆M与直线相切时,求点M的坐标.
如图1,关于的二次函数y=-+bx+c经过点A(-3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上。 (1)求抛物线的解析式; (2)DE上是否存在点P到AD的距离与到轴的距离相等,若存在求出点P,若不存在请说明理由; (3)如图2,DE的左侧抛物线上是否存在点F,使2=3,若存在求出点F的坐标,若不存在请说明理由。
(为方便答题,可在答题卡上画出你认为必要的图形) 在Rt△ABC中,∠A=90°,AC =" AB" = 4,D,E分别是边AB,AC的中点.若等腰Rt△ADE绕点A逆时针旋转,得到等腰RtRt△AD1E1,设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P. (1)如图1,当α=90°时,线段BD1的长等于 ,线段CE1的长等于 ;(直接填写结果) (2)如图2,当α=135°时,求证:BD1 = CE1 ,且BD1⊥ CE1 ; (3)求点P到AB所在直线的距离的最大值.(直接写出结果)
如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动。 (1)当B与O重合的时候,求三角板运动的时间; (2)如图2,当AC与半圆相切时,求AD; (3)如图3,当AB和DE重合时,求证:=CG·CE.