四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC.(1)如图1,若点E在CB边的延长线上,直接写出EG与GC的位置关系及的值;(2)将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)将图1中的△BEF绕点B顺时针旋转α(0°<α<90°),若BE=1,,当E,F,D三点共线时,求DF的长及tan∠ABF的值.
解方程组: x - y = 1 , 3 x + y = 7 .
计算: | - 3 | + 8 - 2 .
如图1,矩形 DEFG 中, DG = 2 , DE = 3 , Rt Δ ABC 中, ∠ ACB = 90 ° , CA = CB = 2 , FG , BC 的延长线相交于点 O ,且 FG ⊥ BC , OG = 2 , OC = 4 .将 ΔABC 绕点 O 逆时针旋转 α ( 0 ° ⩽ α < 180 ° ) 得到△ A ' B ' C ' .
(1)当 α = 30 ° 时,求点 C ' 到直线 OF 的距离.
(2)在图1中,取 A ' B ' 的中点 P ,连结 C ' P ,如图2.
①当 C ' P 与矩形 DEFG 的一条边平行时,求点 C ' 到直线 DE 的距离.
②当线段 A ' P 与矩形 DEFG 的边有且只有一个交点时,求该交点到直线 DG 的距离的取值范围.
如图1,排球场长为 18 m ,宽为 9 m ,网高为 2 . 24 m ,队员站在底线 O 点处发球,球从点 O 的正上方 1 . 9 m 的 C 点发出,运动路线是抛物线的一部分,当球运动到最高点 A 时,高度为 2 . 88 m ,即 BA = 2 . 88 m ,这时水平距离 OB = 7 m ,以直线 OB 为 x 轴,直线 OC 为 y 轴,建立平面直角坐标系,如图2.
(1)若球向正前方运动(即 x 轴垂直于底线),求球运动的高度 y ( m ) 与水平距离 x ( m ) 之间的函数关系式(不必写出 x 取值范围).并判断这次发球能否过网?是否出界?说明理由.
(2)若球过网后的落点是对方场地①号位内的点 P (如图1,点 P 距底线 1 m ,边线 0 . 5 m ) ,问发球点 O 在底线上的哪个位置?(参考数据: 2 取 1 . 4 )
问题:如图,在 ΔABD 中, BA = BD .在 BD 的延长线上取点 E , C ,作 ΔAEC ,使 EA = EC .若 ∠ BAE = 90 ° , ∠ B = 45 ° ,求 ∠ DAC 的度数.
答案: ∠ DAC = 45 ° .
思考:(1)如果把以上“问题”中的条件“ ∠ B = 45 ° ”去掉,其余条件不变,那么 ∠ DAC 的度数会改变吗?说明理由.
(2)如果把以上“问题”中的条件“ ∠ B = 45 ° ”去掉,再将“ ∠ BAE = 90 ° ”改为“ ∠ BAE = n ° ”,其余条件不变,求 ∠ DAC 的度数.