如图, ΔABC 中, ∠ BAC = 120 ° , AB = AC = 6 . P 是底边 BC 上的一个动点 ( P 与 B 、 C 不重合),以 P 为圆心, PB 为半径的 ⊙ P 与射线 BA 交于点 D ,射线 PD 交射线 CA 于点 E .
(1)若点 E 在线段 CA 的延长线上,设 BP = x , AE = y ,求 y 关于 x 的函数关系式,并写出 x 的取值范围.
(2)当 BP = 2 3 时,试说明射线 CA 与 ⊙ P 是否相切.
(3)连接 PA ,若 S ΔAPE = 1 8 S ΔABC ,求 BP 的长.
已知:如图,点C、E均在直线AB上.(1)在图中作∠FEB,使∠FEB=∠DCB(保留作图痕迹,不写作法);(2)请说出射线EF与射线CD的位置关系.
如图所示,点E、F、G、H分别为□ABCD的边AB、BC、CD、DA的中点.求证:EF=HG.
先化简,再求值:,其中
计算:
已知:正方形OABC的边OC、OA分别在x、y轴的正半轴上,设点B(4,4),点P(t,0)是x轴上一动点,过点O作OH⊥AP于点H,直线OH交直线BC于点D,连AD。(1)如图1,当点P在线段OC上时,求证:OP=CD;(2)在点P运动过程中,△AOP与以A、B、D为顶点的三角形相似时,求t的值;(3)如图2,抛物线y=-x2+x+4上是否存在点Q,使得以P、D、Q、C为顶点的四边形为平行四边形,若存在,请求出t的值;若不存在,请说明理由。