如图, ΔABC 中, ∠ BAC = 120 ° , AB = AC = 6 . P 是底边 BC 上的一个动点 ( P 与 B 、 C 不重合),以 P 为圆心, PB 为半径的 ⊙ P 与射线 BA 交于点 D ,射线 PD 交射线 CA 于点 E .
(1)若点 E 在线段 CA 的延长线上,设 BP = x , AE = y ,求 y 关于 x 的函数关系式,并写出 x 的取值范围.
(2)当 BP = 2 3 时,试说明射线 CA 与 ⊙ P 是否相切.
(3)连接 PA ,若 S ΔAPE = 1 8 S ΔABC ,求 BP 的长.
(1)计算:(2)化简:.
如图,P为正方形ABCD的对称中心,正方形ABCD的边长为,,直线OP交AB于N,DC于M,点H从原点O出发沿x轴的正半轴方向以1个单位每秒速度运动,同时,点R从O出发沿OM方向以个单位每秒速度运动,运动时间为t,求:(1)直接写出A、D、P的坐标;(2)求△HCR面积S与t的函数关系式;(3)当t为何值时,△ANO与△DMR相似?(4)求以A、B、C、R为顶点的四边形是梯形时t的值.
问题背景(1)如图1,△ABC中,DE∥BC分别交AB,AC于D,E两点,过点E作EF∥AB交BC于点F.请按图示数据填空: 四边形DBFE的面积▲, △EFC的面积S1=▲, △ADE的面积S2=▲. 探究发现(2)在(1)中,若,,DE与BC间的距离为.请证明S2=4S1 S2. 拓展迁移(3)如图2,平行四边形DEFG的四个顶点在△ABC的三边上,若△ADG、△DBE、△GFC的面积分别为2、5、3,试利用(2)中的结论求△ABC的面积.
如图,已知正比例函数和反比例函数的图像都经过点M(-2,), 且P(,-2)为双曲线上的一点.(1)求出正比例函数和反比例函数的关系式;(2)观察图象,写出正比例函数值大于反比例函数值时自变量的取值范围;(3)若点Q在第一象限中的双曲线上运动,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.
如图,AB是⊙O的直径,∠BAC=30°,M是OA上一点,过M作AB的垂线交AC于点N,交BC的延长线于点E,直线CF交EN于点F,且∠ECF=∠E.(1)证明CF是⊙O的切线;(2)设⊙O的半径为1,且AC=CE,求MO的长.