如图,在等腰直角三角形 ABC 中, ∠ ACB = 90 ° , AC = BC = 4 , D 是 AB 的中点, E , F 分别是 AC , BC 上的点(点 E 不与端点 A , C 重合),且 AE = CF ,连接 EF 并取 EF 的中点 O ,连接 DO 并延长至点 G ,使 GO = OD ,连接 DE , DF , GE , GF .
(1)求证:四边形 EDFG 是正方形;
(2)当点 E 在什么位置时,四边形 EDFG 的面积最小?并求四边形 EDFG 面积的最小值.
解方程:
解方程组
先化简,再求值:(-)·,其中x=-3.
(本小题满分12分)如图,平面直角坐标系中,抛物线交轴于A、B两点(点B在点A的右侧),交轴于点C,以OC、OB为两边作矩形OBDC,CD交抛物线于G. (1)求OC和OB的长; (2)抛物线的对称轴在边OB(不包括O、B两点)上作平行移动,交轴于点E,交CD于点F,交BC于点M,交抛物线于点P.设OE=m,PM=h,求h与m的函数关系式,并求出PM的最大值; (3)在(2)的情况下,连接PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△BEM相似?若存在,直接写出此时m的值,并直接判断此时△PCM的形状;若不存在,请说明理由.
(本题12分)某学校活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程: (1)●操作发现: 在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是①②③④ (填序号即可) ①AF=AG=AB;②MD=ME;③整个图形是轴对称图形. (2)●数学思考: 在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图2所示,M是BC的中点,连接MD和ME,则MD与ME具有怎样的数量和位置关系?请给出证明过程; (3)●类比探究: 在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,则△MED的形状为___________________.等腰直角三角形