初中数学

如图,在菱形 ABCD 中,过点 D DE AB 于点 E ,作 DF BC 于点 F ,连接 EF

求证:(1) ΔADE ΔCDF

(2) BEF = BFE

来源:2017年辽宁省沈阳市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° A = 30 ° ,点 O AB 中点,点 P 为直线 BC 上的动点(不与点 B 、点 C 重合),连接 OC OP ,将线段 OP 绕点 P 顺时针旋转 60 ° ,得到线段 PQ ,连接 BQ

(1)如图1,当点 P 在线段 BC 上时,请直接写出线段 BQ CP 的数量关系.

(2)如图2,当点 P CB 延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;

(3)如图3,当点 P BC 延长线上时,若 BPO = 15 ° BP = 4 ,请求出 BQ 的长

来源:2017年辽宁省盘锦市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图,在等腰 ΔABC 中, AB = BC ,以 BC 为直径的 O AC 相交于点 D ,过点 D DE AB CB 延长线于点 E ,垂足为点 F

(1)判断 DE O 的位置关系,并说明理由;

(2)若 O 的半径 R = 5 tan C = 1 2 ,求 EF 的长.

来源:2017年辽宁省盘锦市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图1,在 Rt Δ ABC 中, ACB = 90 ° AC = BC ,点 D E 分别在 AC BC 边上, DC = EC ,连接 DE AE BD ,点 M N P 分别是 AE BD AB 的中点,连接 PM PN MN

(1) BE MN 的数量关系是  

(2)将 ΔDEC 绕点 C 逆时针旋转到如图2的位置,判断(1)中的结论是否仍然成立,如果成立,请写出证明过程,若不成立,请说明理由;

(3)若 CB = 6 CE = 2 ,在将图1中的 ΔDEC 绕点 C 逆时针旋转一周的过程中,当 B E D 三点在一条直线上时, MN 的长度为  

来源:2017年辽宁省辽阳市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图, Rt Δ ABC 中, ACB = 90 ° ,以 BC 为直径的 O AB 于点 D E F O 上两点,连接 AE CF DF ,满足 EA = CA

(1)求证: AE O 的切线;

(2)若 O 的半径为3, tan CFD = 4 3 ,求 AD 的长.

来源:2017年辽宁省辽阳市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

阅读理解:

我们把满足某种条件的所有点所组成的图形,叫做符合这个条件的点的轨迹.

例如:角的平分线是到角的两边距离相等的点的轨迹.

问题:如图1,已知 EF ΔABC 的中位线, M 是边 BC 上一动点,连接 AM EF 于点 P ,那么动点 P 为线段 AM 中点.

理由: 线段 EF ΔABC 的中位线, EF / / BC

由平行线分线段成比例得:动点 P 为线段 AM 中点.

由此你得到动点 P 的运动轨迹是:            

知识应用:

如图2,已知 EF 为等边 ΔABC AB AC 上的动点,连接 EF ;若 AF = BE ,且等边 ΔABC 的边长为8,求线段 EF 中点 Q 的运动轨迹的长.

拓展提高:

如图3, P 为线段 AB 上一动点(点 P 不与点 A B 重合),在线段 AB 的同侧分别作等边 ΔAPC 和等边 ΔPBD ,连接 AD BC ,交点为 Q

(1)求 AQB 的度数;

(2)若 AB = 6 ,求动点 Q 运动轨迹的长.

来源:2016年山东省日照市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

已知: ΔABC ΔADE 均为等边三角形,连接 BE CD ,点 F G H 分别为 DE BE CD 中点.

(1)当 ΔADE 绕点 A 旋转时,如图1,则 ΔFGH 的形状为  ,说明理由;

(2)在 ΔADE 旋转的过程中,当 B D E 三点共线时,如图2,若 AB = 3 AD = 2 ,求线段 FH 的长;

(3)在 ΔADE 旋转的过程中,若 AB = a AD = b ( a > b > 0 ) ,则 ΔFGH 的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.

来源:2017年辽宁省锦州市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图, MAN = 60 ° AP 平分 MAN ,点 B 是射线 AP 上一定点,点 C 在直线 AN 上运动,连接 BC ,将 ABC ( 0 ° < ABC < 120 ° ) 的两边射线 BC BA 分别绕点 B 顺时针旋转 120 ° ,旋转后角的两边分别与射线 AM 交于点 D 和点 E

(1)如图1,当点 C 在射线 AN 上时,

①请判断线段 BC BD 的数量关系,直接写出结论;

②请探究线段 AC AD BE 之间的数量关系,写出结论并证明;

(2)如图2,当点 C 在射线 AN 的反向延长线上时, BC 交射线 AM 于点 F ,若 AB = 4 AC = 3 ,请直接写出线段 AD DF 的长.

来源:2017年辽宁省葫芦岛市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图, ΔABC 内接于 O AC 是直径, BC = BA ,在 ACB 的内部作 ACF = 30 ° ,且 CF = CA ,过点 F FH AC 于点 H ,连接 BF

(1)若 CF O 于点 G O 的半径是4,求 AG ̂ 的长;

(2)请判断直线 BF O 的位置关系,并说明理由.

来源:2017年辽宁省葫芦岛市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

在菱形 ABCD 中,点 E 为对角线 BD 上一点,点 F G 在直线 BC 上,且 BE = EG AEF = BEG

(1)如图1,求证: ΔABE ΔFGE

(2)如图2,当 ABC = 120 ° 时,求证: AB = BE + BF

(3)如图3,当 ABC = 90 ° ,点 F 在线段 BC 上时,线段 AB BE BF 的数量关系如何?(请直接写出你猜想的结论)

来源:2017年辽宁省阜新市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图, ΔABC 在平面直角坐标系内,顶点的坐标分别为 A ( 1 , 5 ) B ( 4 , 2 ) C ( 2 , 2 )

(1)平移 ΔABC ,使点 B 移动到点 B 1 ( 1 , 1 ) ,画出平移后的△ A 1 B 1 C 1 ,并写出点 A 1 C 1 的坐标.

(2)画出 ΔABC 关于原点 O 对称的△ A 2 B 2 C 2

(3)线段 A A 1 的长度为  

来源:2017年辽宁省阜新市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图, OF MON 的平分线,点 A 在射线 OM 上, P Q 是直线 ON 上的两动点,点 Q 在点 P 的右侧,且 PQ = OA ,作线段 OQ 的垂直平分线,分别交直线 OF ON 于点 B 、点 C ,连接 AB PB

(1)如图1,当 P Q 两点都在射线 ON 上时,请直接写出线段 AB PB 的数量关系;

(2)如图2,当 P Q 两点都在射线 ON 的反向延长线上时,线段 AB PB 是否还存在(1)中的数量关系?若存在,请写出证明过程;若不存在,请说明理由;

(3)如图3, MON = 60 ° ,连接 AP ,设 AP OQ = k ,当 P Q 两点都在射线 ON 上移动时, k 是否存在最小值?若存在,请直接写出 k 的最小值;若不存在,请说明理由.

来源:2017年辽宁省抚顺市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

已知: ΔABC ΔADE 按如图所示方式放置,点 D ΔABC 内,连接 BD CD CE ,且 DCE = 90 °

(1)如图①,当 ΔABC ΔADE 均为等边三角形时,试确定 AD BD CD 三条线段的关系,并说明理由;

(2)如图②,当 BA = BC = 2 AC DA = DE = 2 AE 时,试确定 AD BD CD 三条线段的关系,并说明理由;

(3)如图③,当 AB : BC : AC = AD : DE : AE = m : n : p 时,请直接写出 AD BD CD 三条线段的关系.

来源:2017年辽宁省丹东市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC AD BC 于点 D E AB 上一点,以 CE 为直径的 O BC 于点 F ,连接 DO ,且 DOC = 90 °

(1)求证: AB O 的切线;

(2)若 DF = 2 DC = 6 ,求 BE 的长.

来源:2017年辽宁省丹东市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图1,四边形 ABCD 的对角线 AC BD 相交于点 O OB = OD OC = OA + AB AD = m BC = n ABD + ADB = ACB

(1)填空: BAD ACB 的数量关系为  BAD + ACB = 180 °  

(2)求 m n 的值;

(3)将 ΔACD 沿 CD 翻折,得到△ A ' CD (如图 2 ) ,连接 BA ' ,与 CD 相交于点 P .若 CD = 5 + 1 2 ,求 PC 的长.

来源:2017年辽宁省大连市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

初中数学三角形解答题