在菱形 ABCD 中,点 E 为对角线 BD 上一点,点 F , G 在直线 BC 上,且 BE = EG , ∠ AEF = ∠ BEG .
(1)如图1,求证: ΔABE ≅ ΔFGE ;
(2)如图2,当 ∠ ABC = 120 ° 时,求证: AB = BE + BF ;
(3)如图3,当 ∠ ABC = 90 ° ,点 F 在线段 BC 上时,线段 AB , BE , BF 的数量关系如何?(请直接写出你猜想的结论)
解不等式组
若,求分式的值.
已知抛物线的顶点坐标为,且经过点C(1,0),若此抛物线与x 轴的另一交点为点B,与y轴的交点为点A,设P、Q分别为AB、OB边上的动点,它们同时分别从点A、O 向B点匀速运动,速度均为每秒1个单位,设P、Q移动时间为t(0≤t≤4) (1)求此抛物线的解析式;并求出P点的坐标(用t表示); (2)当△OPQ面积最大时求△OBP的面积; (3)当t为何值时,△OPQ为直角三角形? (4)△OPQ是否可能为等边三角形?若可能请求出t的值;若不可能请说明理由,并改变点Q 的运动速 度,使△OPQ为等边三角形,求出此时Q点运动的速度和此时t的值
如图,在平面直角坐标系中,已知点A(4,0),点B(0,3) 点P从点A出发,以每秒1个单位的速度向右平移,点Q从点B出发,以每秒2个单位的速度向右平移,又P、Q两点同时出发 (1)连接AQ,当△ABQ是直角三角形时,求点Q的坐标; (2)当P、Q运动到某个位置时,如果沿着直线AQ翻折,点P恰好落在线段AB上,求这时∠AQP的度数; (3)过点A作AC⊥AB,AC交射线PQ于点C,连接BC,D是BC的中点 在点P、Q的运动过程中,是否存在某时刻,使得以A、C、Q、D为顶点的四边形是平行四边形?若存在,试求出这时tan∠ABC的值;若不存在,试说明理由
直角三角板ABC中,∠A=30°,BC=2 将其绕直角顶点C逆时针旋转一个角(且≠ 90°),得到Rt△, (1)如图1,当边经过点B时,求旋转角的度数; (2)在三角板旋转的过程中,边与AB所在直线交于点D,过点 D作DE∥交边于点E,联结BE ①当时,设,,求与之间的函数解析式及取值范围; ②当时,求的长