在菱形 ABCD 中,点 E 为对角线 BD 上一点,点 F , G 在直线 BC 上,且 BE = EG , ∠ AEF = ∠ BEG .
(1)如图1,求证: ΔABE ≅ ΔFGE ;
(2)如图2,当 ∠ ABC = 120 ° 时,求证: AB = BE + BF ;
(3)如图3,当 ∠ ABC = 90 ° ,点 F 在线段 BC 上时,线段 AB , BE , BF 的数量关系如何?(请直接写出你猜想的结论)
如图,在直角坐标系xOy中,一直线y=2x+b经过点A(-1,0)与y轴正半轴交于B点,在x轴正半轴上有一点D,且OB=OD,过D点作DC⊥x轴交直线y=2x+b于C点,反比例函数y=(x>O)经过点C. (1)求b,k的值; (2)求△BDC的面积; (3)在反比例函数y=(x>0)的图象上找一点P(异于点C),使△BDP与△BDC的面积相等,求出P点坐标.
某演艺大厅有2个入口和3个出口,其示意图如下,参观者从任意一个入口进入,参观结束后从任意一个出口离开 (1)用树状图表示,小明从进入到离开,对于入口和出口的选掉有多少种不同的结果? (2)小明从入口A进入并从出口1离开的概率是多少?
如图,在四边形ABCD中,AD∥BC,∠A=90°,CE⊥BD于E,AB=EC• (1)求证:△ABD≌△ECB; (2)若∠EDC=65°,求∠ECB的度数; (3)若AD=3,AB=4,求DC的长.
解分式方程:.
先化简,再求值:()÷,其中a=+1.