如图, ΔABC 在平面直角坐标系内,顶点的坐标分别为 A ( − 1 , 5 ) , B ( − 4 , 2 ) , C ( − 2 , 2 ) .
(1)平移 ΔABC ,使点 B 移动到点 B 1 ( 1 , 1 ) ,画出平移后的△ A 1 B 1 C 1 ,并写出点 A 1 , C 1 的坐标.
(2)画出 ΔABC 关于原点 O 对称的△ A 2 B 2 C 2 .
(3)线段 A A 1 的长度为 .
如图,AB为⊙O的直径,AC为⊙O的弦,AD平分∠BAC,交⊙O于点D,DE⊥AC,交AC的延长线于点E. (1)判断直线DE与⊙O的位置关系,并说明理由; (2)若AE=8,⊙O的半径为5,求DE的长.
某工厂大楼后面紧邻着一个土坡,坡上面是一块平地,如图所示,BC∥AD,斜坡AB长20m,坡角∠BAD=60°,为了防止山体滑坡,保障安全,工厂决定对该土坡进行改造.经地质人员勘测,当坡角不超过45°时,可确保山体不滑坡. (1)求改造前坡顶与地面的距离BE的长; (2)为确保安全,工厂计划改造时保持坡脚A不动,坡顶B沿BC削进到F点处,问BF至少是多少米?(结果均保留根号)
如图,□ABCD中,过点B作BG∥AC,在BG上取一点E,连结DE交AC的延长线于点F. (1)求证:DF=EF; (2)如果AD=2,∠ADC=60°,AC⊥DC于点C,AC=2CF,求BE的长.
学校为了解全校1600名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的频数分布直方图和扇形统计图(均不完整). (1)在这次调查中,一共抽取了名学生; (2)选择“步行”上学的学生有人; (3)扇形统计图中,“私家车”所对应扇形的圆心角的度数为; (4)估计全校所有学生中有多少人乘坐公交车上学.
化简代数式(-4)÷ ,当满足且为正整数时,求代数式的值.