如图,正方形 ABCD的边长为3 cm, P, Q分别从 B, A出发沿 BC, AD方向运动, P点的运动速度是1 cm/秒, Q点的运动速度是2 cm/秒,连接 A, P并过 Q作 QE⊥ AP垂足为 E.
(1)求证:△ ABP∽△ QEA;
(2)当运动时间 t为何值时,△ ABP≌△ QEA;
(3)设△ QEA的面积为 y,用运动时刻 t表示△ QEA的面积 y(不要求考 t的取值范围).(提示:解答(2)(3)时可不分先后)
(本小题满分9分)某校为了了解九年级学生数学测试成绩情况,以九年级(1) 班学生的数学测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题: (说明:A级:108分~120分;B级:102分~107分;C级:72分~101分; D级: 72分以下) (1)补全条形统计图并计算C级学生的人数占全班总人数的百分比; (2)求出D级所在的扇形圆心角的度数; (3)该班学生数学测试成绩的中位数落在哪个等级内; (4)若102分以上(包括102分)为优秀,该校九年级学生共有1500人,请你估计这次考试中数学优秀的学生共有多少人?
(本小题满分8分)如图11,在由边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,E为BC中点,请按要求完成下列各题: (1)画AD∥BC(D为格点),连接CD; (2)通过计算说明△ABC是直角三角形; (3)在△ACB中,tan∠CAE=, 在△ACD中,sin∠CAD=.
(本小题满分8分)解方程:
(本小题满分13分)如图,平面直角坐标系中有一直角梯形OMNH,点H的坐 标为(-8,0),点N的坐标为(-6,-4). (1)画出直角梯形OMNH绕点O旋转180°的图形OABC,并写出顶点A,B,C的坐标(点M的对应点为A,点N的对应点为B,点H的对应点为C); (2)求出过A,B,C三点的抛物线的表达式; (3)截取CE=OF=AG=m,且E,F,G分别在线段CO,OA,AB上,求四边形BEFG的面积S与m之间的函数关系式,并写出自变量m的取值范围;面积S是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由; (4)在(3)的情况下,四边形BEFG是否存在邻边相等的情况,若存在,请直接写出此时m的值,并指出相等的邻边;若不存在,说明理由.