如图,在同一平面内,将两个全等的等腰直角和摆放在一起,为公共顶点,,它们的斜边长为2,若固定不动,绕点旋转,、与边的交点分别为、(点不与点重合,点不与点重合),设,.(1)请在图中找出两对相似而不全等的三角形,并选取其中一对加以证明.(2)求与的函数关系式,直接写出自变量的取值范围.
佳能电脑公司的李经理对2008年11月份电脑的销售情况做了调查,情况如下表:
请你回答下列问题: (1)2008年11月份电脑价格(与销售台数无关)组成的数据平均数为 ,中位数为 ,本月平均每天销售 台(11月份为30天). (2)如果你是该商场的经理,根据以上信息,应该如何组织货源,并说明你的理由.
已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.求证:AD平分∠BAC.
上个月,商店共卖出甲、乙两种商品1000件,这个月甲商品多卖出50%,乙商品少卖出10%,结果产品的总销量减少了4%,上个月甲、乙两种商品各卖出多少件?
解下列各题: (1)解方程组 (2)化简: (3)解不等式:≤,并把它的解集表示在数轴上 (4)解不等式组: ,并把它的解集表示在数轴上.
已知抛物线y=ax2+bx+3与y轴的交点为A,点A与点B关于抛物线的对称轴对称,二次函数y=ax2+bx+3的y与x的部分对应值如下表:
(1)抛物线的对称轴是_________ .点A(______,____),B(_____,_____); (2)求二次函数y=ax2+bx+3的解析式; (3)已知点M(m,n)在抛物线y=ax2+bx+3上,设△BAM的面积为S,求S与m的函数关系式、画出函数图象.并利用函数图象说明S是否存在最大值,为什么?