如图1,四边形 ABCD 的对角线 AC , BD 相交于点 O , OB = OD , OC = OA + AB , AD = m , BC = n , ∠ ABD + ∠ ADB = ∠ ACB .
(1)填空: ∠ BAD 与 ∠ ACB 的数量关系为 ∠ BAD + ∠ ACB = 180 ° ;
(2)求 m n 的值;
(3)将 ΔACD 沿 CD 翻折,得到△ A ' CD (如图 2 ) ,连接 BA ' ,与 CD 相交于点 P .若 CD = 5 + 1 2 ,求 PC 的长.
一根蜡烛高20cm,蜡烛高度 y(单位:cm)随燃烧的时间x(单位:分钟)的增加而减少,平均每分钟减少量为0.1cm/分钟.求y与x的函数关系式,并画出该函数的图象.
如图,在平行四边形ABCD中,E是BC边上的点,且BE=3EC,AE与DC的延长线交于点F.若CD=6,求CF的长.
已知:如图,在四边形ABCD中,∠A=130°,∠C=90°,∠D=40°,BE∥AD交CD于点E.求证:BE平分∠ABC.
一个不透明的口袋中有3个完全相同的小球,分别标有数字1,2,3,随机摸出一个小球然后放回,再随机摸出一个小球,求两次摸出的小球数字之积等于3的概率.
如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(-1,3),B(-3,2),C(0,1).画出△ABC,并画出关于原点O对称的△A1B1C1.