为了构建城市立体道路网络,决定修建一条轻轨铁路,为了使工程提前6个月完成,需将原定的工作效率提高25%.原计划完成这项工程需要多少个月?
教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮).
(1)将4个开关都闭合时,教室里所有灯都亮起的概率是 ;
(2)在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排与第三排灯的概率.
如图,已知抛物线 y = x 2 + bx 与直线 y = 2 x + 4 交于 A ( a , 8 ) 、 B 两点,点 P 是抛物线上 A 、 B 之间的一个动点,过点 P 分别作 x 轴、 y 轴的平行线与直线 AB 交于点 C 和点 E .
(1)求抛物线的解析式;
(2)若 C 为 AB 中点,求 PC 的长;
(3)如图,以 PC , PE 为边构造矩形 PCDE ,设点 D 的坐标为 ( m , n ) ,请求出 m , n 之间的关系式.
如图,在 ΔABC 中, D 为 AC 上一点,且 CD = CB ,以 BC 为直径作 ⊙ O ,交 BD 于点 E ,连接 CE ,过 D 作 DF ⊥ AB 于点 F , ∠ BCD = 2 ∠ ABD .
(1)求证: AB 是 ⊙ O 的切线;
(2)若 ∠ A = 60 ° , DF = 3 ,求 ⊙ O 的直径 BC 的长.
如图,已知 ΔABC 中, AB = AC ,把 ΔABC 绕 A 点沿顺时针方向旋转得到 ΔADE ,连接 BD , CE 交于点 F .
(1)求证: ΔAEC ≅ ΔADB ;
(2)若 AB = 2 , ∠ BAC = 45 ° ,当四边形 ADFC 是菱形时,求 BF 的长.
为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为 x (分 ) ,且 50 ⩽ x < 100 ,将其按分数段分为五组,绘制出以下不完整表格:
组别
成绩 x (分 )
频数(人数)
频率
一
50 ⩽ x < 60
2
0.04
二
60 ⩽ x < 70
10
0.2
三
70 ⩽ x < 80
14
b
四
80 ⩽ x < 90
a
0.32
五
90 ⩽ x < 100
8
0.16
请根据表格提供的信息,解答以下问题:
(1)本次决赛共有 名学生参加;
(2)直接写出表中 a = , b = ;
(3)请补全下面相应的频数分布直方图;
(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 .