在 中, , , 是边 上一点,将 沿 折叠得到 ,连接 .
(1)特例发现
如图1,当 , 落在直线 上时.
①求证: ;
②填空: 的值为 ;
(2)类比探究
如图2,当 , 与边 相交时,在 上取一点 ,使 , 交 于点 .探究 的值(用含 的式子表示),并写出探究过程;
(3)拓展运用
在(2)的条件下,当 , 是 的中点时,若 ,求 的长.
问题提出
如图(1),在 和 中, , , ,点 在 内部,直线 与 于点 .线段 , , 之间存在怎样的数量关系?
问题探究
(1)先将问题特殊化如图(2),当点 , 重合时,直接写出一个等式,表示 , , 之间的数量关系;
(2)再探究一般情形如图(1),当点 , 不重合时,证明(1)中的结论仍然成立.
问题拓展
如图(3),在 和 中, , , 是常数),点 在 内部,直线 与 交于点 .直接写出一个等式,表示线段 , , 之间的数量关系.
等面积法是一种常用的、重要的数学解题方法.它是利用“同一个图形的面积相等”、“分割图形后各部分的面积之和等于原图形的面积”、“同底等高或等底同高的两个三角形面积相等”等性质解决有关数学问题,在解题中,灵活运用等面积法解决相关问题,可以使解题思路清晰,解题过程简便快捷.
(1)在直角三角形中,两直角边长分别为3和4,则该直角三角形斜边上的高的长为 ,其内切圆的半径长为 ;
(2)①如图1, 是边长为 的正 内任意一点,点 为 的中心,设点 到 各边距离分别为 , , ,连接 , , ,由等面积法,易知 ,可得 ;(结果用含 的式子表示)
②如图2, 是边长为 的正五边形 内任意一点,设点 到五边形 各边距离分别为 , , , , ,参照①的探索过程,试用含 的式子表示 的值.(参考数据: ,
(3)①如图3,已知 的半径为2,点 为 外一点, , 切 于点 ,弦 ,连接 ,则图中阴影部分的面积为 ;(结果保留
②如图4,现有六边形花坛 ,由于修路等原因需将花坛进行改造,若要将花坛形状改造成五边形 ,其中点 在 的延长线上,且要保证改造前后花坛的面积不变,试确定点 的位置,并说明理由.
已知等边三角形 ,过 点作 的垂线 ,点 为 上一动点(不与点 重合),连接 ,把线段 绕点 逆时针方向旋转 得到 ,连 .
(1)如图1,直接写出线段 与 的数量关系;
(2)如图2,当点 、 在 同侧且 时,求证:直线 垂直平分线段 ;
(3)如图3,若等边三角形 的边长为4,点 、 分别位于直线 异侧,且 的面积等于 ,求线段 的长度.
如图,在 中, ,以 为直径的 与 相交于点 , ,垂足为 .
(1)求证: 是 的切线;
(2)若弦 垂直于 ,垂足为 , , ,求 的半径;
(3)在(2)的条件下,当 时,求线段 的长.
在等腰 中, , 是直角三角形, , ,连接 、 ,点 是 的中点,连接 .
(1)当 ,点 在边 上时,如图①所示,求证: ;
(2)当 ,把 绕点 逆时针旋转,顶点 落在边 上时,如图②所示,当 ,点 在边 上时,如图③所示,猜想图②、图③中线段 和 又有怎样的数量关系?请直接写出你的猜想,不需证明.
如图1,在正方形 中,点 是边 上一点,且点 不与点 、 重合,点 是 的延长线上一点,且 .
(1)求证: ;
(2)如图2,连接 ,交 于点 ,过点 作 ,垂足为 ,延长 交 于点 ,连接 , .
①求证: ;
②若 ,求 的长.
在四边形 中,对角线 平分 .
【探究发现】
(1)如图①,若 , .求证: ;
【拓展迁移】
(2)如图②,若 , .
①猜想 、 、 三条线段的数量关系,并说明理由;
②若 ,求四边形 的面积.
如图,在四边形 中,对角线 与 交于点 ,已知 , ,过点 作 ,分别交 、 于点 , ,连接 , .
(1)求证:四边形 是菱形:
(2)设 , , ,求 的长.
问题解决:如图1,在矩形 中,点 , 分别在 , 边上, , 于点 .
(1)求证:四边形 是正方形;
(2)延长 到点 ,使得 ,判断 的形状,并说明理由.
类比迁移:如图2,在菱形 中,点 , 分别在 , 边上, 与 相交于点 , , , , ,求 的长.
如图,在正方形 中, , 为边 上的两个三等分点,点 关于 的对称点为 , 的延长线交 于点 .
(1)求证: ;
(2)求 的大小;
(3)求证: .
如图,在 中, , , 为 的中点,点 在 上,以点 为中心,将线段 顺时针旋转 得到线段 ,连接 , .
(1)比较 与 的大小;用等式表示线段 , , 之间的数量关系,并证明;
(2)过点 作 的垂线,交 于点 ,用等式表示线段 与 的数量关系,并证明.
△ABC为等边三角形, , 于点D,E为线段 上一点, .以AE为边在直线 右侧构造等边三角形 ,连接 ,N为 的中点.
(1)如图1, 交于点G,连接 ,求线段 的长;
(2)如图2,将 绕点A逆时针旋转,旋转角为α,M为线段EF的中点,连接 , .当 时,猜想∠DNM的大小是否为定值,并证明你的结论;
(3)连接BN,在 绕点A逆时针旋转过程中,当线段BN最大时,请直接写出 的面积.
发现规律
(1)如图①, 与 都是等边三角形,直线 , 交于点 .直线 , 交于点 .求 的度数.
(2)已知: 与 的位置如图②所示,直线 , 交于点 .直线 , 交于点 .若 , ,求 的度数.
应用结论
(3)如图③,在平面直角坐标系中,点 的坐标为 ,点 的坐标为 , 为 轴上一动点,连接 .将线段 绕点 逆时针旋转 得到线段 ,连接 , .求线段 长度的最小值.