问题提出
如图(1),在 ΔA BC 和 ΔDEC 中, ∠ ACB = ∠ DCE = 90 ° , BC = AC , EC = DC ,点 E 在 ΔABC 内部,直线 AD 与 BE 于点 F .线段 AF , BF , CF 之间存在怎样的数量关系?
问题探究
(1)先将问题特殊化如图(2),当点 D , F 重合时,直接写出一个等式,表示 AF , BF , CF 之间的数量关系;
(2)再探究一般情形如图(1),当点 D , F 不重合时,证明(1)中的结论仍然成立.
问题拓展
如图(3),在 ΔABC 和 ΔDEC 中, ∠ ACB = ∠ DCE = 90 ° , BC = kAC , EC = kDC ( k 是常数),点 E 在 ΔABC 内部,直线 AD 与 BE 交于点 F .直接写出一个等式,表示线段 AF , BF , CF 之间的数量关系.
如图,一段街道的两边缘所在直线分别为AB,PQ,并且AB∥PQ.建筑物的一端DE所在的直线MN⊥AB于点M,交PQ于点N,步行街宽MN为13.4米,建筑物宽DE为6米,光明巷宽EN为2.4米.小亮在胜利街的A处,测得此时AM为12米,求此时小亮距建筑物拐角D处有多远?
如图,点B是△ADC的边AD的延长线上一点,若∠C=50°,∠BDE=60°,∠ADC=70°.求证:DE∥AC.
解方程组:.
如图,点C在∠MAN的边AM上,CD⊥AN,垂足为点D,点B在边AN上运动,∠BCA的平分线交AN于点E。 (1)若∠A=30°,∠B=70°,求∠ECD的度数; (2)若∠A=,∠B=,求∠ECD的度数(用含的式子表示).
某校准备组织七年级400名学生参加北京夏令营,已知用3辆小客车和1辆大客车每次可运送学生105人;用1辆小客车和2辆大客车每次可运送学生110人; (1)每辆小客车和每辆大客车各能坐多少名学生? (2)若学校计划租用小客车x辆,大客车y辆,一次送完,且恰好每辆车都坐满; ①请你设计出所有的租车方案; ②若小客车每辆需租金4000元,大客车每辆需租金7600元,请选出最省钱的租车方案,并求出最少租金.