如图,已知点B、D、E、C在同一直线上,AB=AC,AD=AE.求证:BD=CE(1)根据下面说理步骤填空证法一:作AM⊥BC,垂足为M.∵AB=AC( ) AM⊥BC(辅助线)∴BM=CM( )同理DM=EM.∴BM﹣DM=CM﹣EM( )∴BD=CE(线段和、差的意义)(2)根据下面证法二的辅助线完成后面的说理步骤.证法二:作△ABC的中线AM.
如图,在正方形ABCD中,点E在边AD上,点F在边BC的延长线上,连接EF与边CD相交于点G,连接BE与对角线AC相交于点H, AE=CF,BE=EG。 (1)求证:EF//AC; (2)求∠BEF大小; (3)求证:
如图,点A是反比例函数上一点,作AB⊥x轴于点B,且△AOB的面积为2,点A坐标为(-1,m)。 (1)求k和m的值。 (2)若直线经过点A,交另一支双曲线于点C,求△AOC的面积。 (3)指出x取何值时,一次函数的值大于反比例函数的值,直接写出结果。 (4)在y轴上是否存在点P,使得△PAC的面积为6,如果存在,请求出点P的坐标;若不存在,请说明理由.
如图,在△AFC中,AF=AC,B是CF的中点,AH平分∠CAF,作CD⊥AH于D。 (1)证明四边形ABCD是矩形。 (2)若BD交AC于O,证明:OB//AF且OB= AF。 (3)若使四边形ABCD是正方形,需添加一个条件,请直接写出该条件。
如图,在等腰梯形ABCD中,AD//BC,AD="3" cm,BC="7" cm,∠B=60°,P为下底BC上一点(不与B、C重合),连接AP,过P点作PE交DC于E,使得∠APE=∠B. (1)求证:△ABP∽△PCE; (2)求等腰梯形的腰AB的长; (3)在底边BC上是否存在一点P,使得DE:EC=5:3?如果存在,求出BP的长,如果不存在,请说明理由.
如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长(结果保留小数点后一位,参考数据:,).