已知等边三角形 ABC ,过 A 点作 AC 的垂线 l ,点 P 为 l 上一动点(不与点 A 重合),连接 CP ,把线段 CP 绕点 C 逆时针方向旋转 60 ° 得到 CQ ,连 QB .
(1)如图1,直接写出线段 AP 与 BQ 的数量关系;
(2)如图2,当点 P 、 B 在 AC 同侧且 AP = AC 时,求证:直线 PB 垂直平分线段 CQ ;
(3)如图3,若等边三角形 ABC 的边长为4,点 P 、 B 分别位于直线 AC 异侧,且 ΔAPQ 的面积等于 3 4 ,求线段 AP 的长度.
(本题8分)如图是由边长都是1的小正方形组成的网格.请以图中线段BC为边,作△PBC, 使P在格点上,并满足: (1)图甲中的△PBC是直角三角形,且面积是△ABC面积2倍; (2)图乙中的△PBC是等腰非直角三角形.
(本题10分) (1)计算: . (2)解方程:.
(本题满分14分)抛物线交轴于A(-4,0)、B两点,交轴于C.将一把宽度为1.2的直尺如图放置在直角坐标系中,使直尺边∥,直尺边交轴于E,交AC于F,交抛物线于G,直尺另一边交轴于D.当点D与点A重合时,把直尺沿轴向右平移,当点E与点B重合时,停止平移,在平移过程中,△FDE的面积为S. (1)请你求出抛物线解析式及S的最大值; (2)在直尺平移过程中,直尺边上是否存在一点P,使点构成的四边形是这菱形,若 存在,请你求出点P坐标;若不存在,请说明理由; (3)过G作GH⊥轴于H ① 在直尺平移过程中,请你求出GH+HO的最大值; ②点Q、R分别是HC、HB的中点,请你直接写出在直尺平移过程中,线段QR扫过的图形的周长.
温州某绿色无公害蔬菜基地有甲、乙两种植户,他们种植了A、B两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表:
说明:不同种植户种植的同类蔬菜每亩平均收入相等. ⑴求A、B两类蔬菜每亩平均收入各是多少元? ⑵某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户的最大利润方案.
如图,C为以AB为直径的⊙O上一点,AD和过点C的切线互相垂直,垂足为点D. (1)求证:AC平分∠BAD; (2)若CD=3,AC=,求⊙O 的半径长.