已知等边三角形 ABC ,过 A 点作 AC 的垂线 l ,点 P 为 l 上一动点(不与点 A 重合),连接 CP ,把线段 CP 绕点 C 逆时针方向旋转 60 ° 得到 CQ ,连 QB .
(1)如图1,直接写出线段 AP 与 BQ 的数量关系;
(2)如图2,当点 P 、 B 在 AC 同侧且 AP = AC 时,求证:直线 PB 垂直平分线段 CQ ;
(3)如图3,若等边三角形 ABC 的边长为4,点 P 、 B 分别位于直线 AC 异侧,且 ΔAPQ 的面积等于 3 4 ,求线段 AP 的长度.
解方程组:(1) (2)
计算:(1) (2)
直线y=和x轴,y轴分别交于点E,F,点A是线段EF上一动点(不与点E重合),过点A作x轴垂线,垂足是点B,以AB为边向右作矩形ABCD,AB:BC=3:4。(1)当点A与点F重合时,求证:四边形ADBE是平行四边形,并求直线DE的表达式;(2)当点A不与点F重合时,四边形ADBE仍然是平行四边形?说明理由,此时你还能求出直线DE的表达式吗?若能,请你求出来。
已知O是坐标原点,点A的坐标是(5,0),点B是y轴正半轴上一动点,以OB,OA为边作矩形OBCA,点E,H分别在边BC和边OA上,将△BOE沿着OE对折,使点B落在OC上的F点处,将△ACH沿着CH对折,使点A落在OC上的G点处。(1)求证:四边形OECH是平行四边形;(2)当点B运动到使得点F,G重合时,求点B的坐标,并判断四边形OECH是什么四边形?说明理由;(3)当点B运动到使得点F,G将对角线OC三等分时,求点B的坐标。
翔志琼公司修筑一条公路,开始修筑若干天以后,公司抽调了一部力量去完成其他任务,所以施工速度有所降低。修筑公路的里程y(千米)和所用时间x(天)的关系用下图所示的折线OAB表示,其中OA所在的直线是函数y=0.1x的图象,AB所在直线是函数y=的图象。(1)求点A的坐标;(2)完成修路工程后,公司发现如果一直按开始的速度修筑此公路,可提前20天完工,求此公路的长度。