翔志琼公司修筑一条公路,开始修筑若干天以后,公司抽调了一部力量去完成其他任务,所以施工速度有所降低。修筑公路的里程y(千米)和所用时间x(天)的关系用下图所示的折线OAB表示,其中OA所在的直线是函数y=0.1x的图象,AB所在直线是函数y=的图象。(1)求点A的坐标;(2)完成修路工程后,公司发现如果一直按开始的速度修筑此公路,可提前20天完工,求此公路的长度。
在等边 ΔABC 中, AB = 6 , BD ⊥ AC ,垂足为 D ,点 E 为 AB 边上一点,点 F 为直线 BD 上一点,连接 EF .
(1)将线段 EF 绕点 E 逆时针旋转 60 ° 得到线段 EG ,连接 FG .
①如图1,当点 E 与点 B 重合,且 GF 的延长线过点 C 时,连接 DG ,求线段 DG 的长;
②如图2,点 E 不与点 A , B 重合, GF 的延长线交 BC 边于点 H ,连接 EH ,求证: BE + BH = 3 BF ;
(2)如图3,当点 E 为 AB 中点时,点 M 为 BE 中点,点 N 在边 AC 上,且 DN = 2 NC ,点 F 从 BD 中点 Q 沿射线 QD 运动,将线段 EF 绕点 E 顺时针旋转 60 ° 得到线段 EP ,连接 FP ,当 NP + 1 2 MP 最小时,直接写出 ΔDPN 的面积.
如图,在平面直角坐标系中,抛物线 y = a x 2 + bx - 4 ( a ≠ 0 ) 与 x 轴交于点 A ( - 1 , 0 ) , B ( 4 , 0 ) ,与 y 轴交于点 C .
(1)求该抛物线的解析式;
(2)直线 l 为该抛物线的对称轴,点 D 与点 C 关于直线 l 对称,点 P 为直线 AD 下方抛物线上一动点,连接 PA , PD ,求 ΔPAD 面积的最大值.
(3)在(2)的条件下,将抛物线 y = a x 2 + bx - 4 ( a ≠ 0 ) 沿射线 AD 平移 4 2 个单位,得到新的抛物线 y 1 ,点 E 为点 P 的对应点,点 F 为 y 1 的对称轴上任意一点,在 y 1 上确定一点 G ,使得以点 D , E , F , G 为顶点的四边形是平行四边形,写出所有符合条件的点 G 的坐标,并任选其中一个点的坐标,写出求解过程.
对于任意一个四位数 m ,若千位上的数字与个位上的数字之和是百位上的数字与十位上的数字之和的2倍,则称这个四位数 m 为"共生数".例如: m = 3507 ,因为 3 + 7 = 2 × ( 5 + 0 ) ,所以3507是"共生数"; m = 4135 ,因为 4 + 5 ≠ 2 × ( 1 + 3 ) ,所以4135不是"共生数".
(1)判断5313,6437是否为"共生数"?并说明理由;
(2)对于"共生数" n ,当十位上的数字是千位上的数字的2倍,百位上的数字与个位上的数字之和能被9整除时,记 F ( n ) = n 3 .求满足 F ( n ) 各数位上的数字之和是偶数的所有 n .
重庆小面是重庆美食的名片之一,深受外地游客和本地民众欢迎.某面馆向食客推出经典特色重庆小面,顾客可到店食用(简称"堂食"小面),也可购买搭配佐料的袋装生面(简称"生食"小面).已知3份"堂食"小面和2份"生食"小面的总售价为31元,4份"堂食"小面和1份"生食"小面的总售价为33元.
(1)求每份"堂食"小面和"生食"小面的价格分别是多少元?
(2)该面馆在4月共卖出"堂食"小面4500份,"生食"小面2500份.为回馈广大食客,该面馆从5月1日起每份"堂食"小面的价格保持不变,每份"生食"小面的价格降低 3 4 a % .统计5月的销量和销售额发现:"堂食"小面的销量与4月相同,"生食"小面的销量在4月的基础上增加 5 2 a % ,这两种小面的总销售额在4月的基础上增加 5 11 a % .求 a 的值.
探究函数性质时,我们经历了列表、描点、连线画函数图象,观察分析图象特征,概括函数性质的过程.以下是我们研究函数 y = x + | - 2 x + 6 | + m 性质及其应用的部分过程,请按要求完成下列各小题.
x
…
- 2
- 1
0
1
2
3
4
5
y
6
a
b
7
(1)写出函数关系式中 m 及表格中 a , b 的值:
m = , a = , b = ;
(2)根据表格中的数据在所给的平面直角坐标系中画出该函数的图象,并根据图象写出该函数的一条性质: ;
(3)已知函数 y = 16 x 的图象如图所示,结合你所画的函数图象,直接写出不等式 x + | - 2 x + 6 | + m > 16 x 的解集.