△ABC为等边三角形, AB = 8 , AD ⊥ BC 于点D,E为线段 AD 上一点, AE = 2 3 .以AE为边在直线 AD 右侧构造等边三角形 AEF ,连接 CE ,N为 CE 的中点.
(1)如图1, EF 与 AC 交于点G,连接 NG ,求线段 NG 的长;
(2)如图2,将 △ AEF 绕点A逆时针旋转,旋转角为α,M为线段EF的中点,连接 DN , MN .当 30 ° < α < 120 ° 时,猜想∠DNM的大小是否为定值,并证明你的结论;
(3)连接BN,在 △ AEF 绕点A逆时针旋转过程中,当线段BN最大时,请直接写出 △ ADN 的面积.
某厂规定,该厂家属区的每户居民如果一个月的用电量不超过A度,那么这个月该户只要交10元用电费,如果超过A度,则这个月仍要交10元用电费外,超过部分还要按每度元交费.(1)该厂某户居民2月份用电90度,超过了规定的度,则超过部分应交费________元.(用含A的式子表示);(2)下表是这户居民3月,4月的用电情况和交费情况.
根据上表的数据,求该厂规定的A是多少?
如图所示,课外活动中,小明在离旗杆AB的12米C处,用测角仪测得旗杆顶部A的仰角为,已知测角仪器的高CD =1.6米,求旗杆AB的高.(精确到米)(供选用的数据:,,)
如图,在中,AB = AC,D是底边BC的中点,作DE⊥AB于E,DF⊥AC于F,求证:DE = DF.证明:(① )在BDE和中,,≌(② )(③ )⑴上面的证明过程是否正确?若正确,请写出①、②和③的推理根据.⑵请你写出另一种证明此题的方法.
解方程:
已知关于的一元二次方程.(1)求证:当取不等于l的实数时,此方程总有两个实数根.(2)若是此方程的两根,并且,直线:交轴于点A,交轴于点B,坐标原点O关于直线的对称点O′在反比例函数的图象上,求反比例函数的解析式.(3)在(2)的成立的条件下,将直线绕点A逆时针旋转角,得到直线′,′交轴于点P,过点P作轴的平行线,与上述反比例函数的图象交于点Q,当四边形APQO′的面积为时,求角的值.