如图,菱形 ABCD 的边长为1, ∠ ABC = 60 ° ,点 E 是边 AB 上任意一点(端点除外),线段 CE 的垂直平分线交 BD , CE 分别于点 F , G , AE , EF 的中点分别为 M , N .
(1)求证: AF = EF ;
(2)求 MN + NG 的最小值;
(3)当点 E 在 AB 上运动时, ∠ CEF 的大小是否变化?为什么?
(7分)如图,在平面直角坐标中,以点M为圆心,以长为半经作圆M交轴于A,B两点,连结AM并延长交圆M于点P,连结PC交轴于点E。 (1)求点A,C的坐标 (2)求证:BE=2OE
解方程
如图,已知四边形ABCD是平行四边形,∠BCD的平分线CF交AB于点F,∠ADC的平分线DG交边AB于点G. (1)求证:AF=GB; (2)请你在已知条件的基础上再添加一个条件,使得△EFG为等腰直角三角形,并说明理由.
已知:如图,在□ABCD中,AC,BD交于点O,EF过点O,分别交CB,AD的延长线于点E,F,求证:AE="CF" .
用三种不同的方法把□ABCD的面积四等分,并简要说明分法.