小文在甲、乙两家超市发现他看中的篮球的单价相同,书包单价也相同,一个篮球和三个书包的总费用是400元.两个篮球和一个书包的总费用也是400元.(1)求小文看中的篮球和书包单价各是多少元?(2)某一天小文上街,恰好赶上商家促销,超市甲所有商品打九折销售,超市乙全场购物满100元返30元购物券(不足100元不返券,购物券全场通用),如果他只能在同一家超市购买他看中的篮球和书包各一个,应选择哪一家超市购买更省钱?
某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨l元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时( 为正整数),月销售利润为y元. (1)求y与x的函数关系式,并直接写出自变量x的取值范围. (2)每件玩具的售价定为多少元时,月销售利润恰为2520元? (3)每件玩具的售价定为多少元时,可使月销售利润最大?最大的月利润是多少?
已知:如图,P是⊙O外一点,PA切⊙O于点A,AB是⊙O的直径,BC∥OP交⊙O于点C. (1)判断直线PC与⊙O的位置关系,并证明你的结论; (2)若BC=2,,求PC的长及点C到PA的距离.
如图,直线与轴交于A点,与反比例函数的图象交于点M,过M作MH轴于点H,且tan∠AHO=2. (1)求k的值, (2)点N(,l)是反比例函数图象上的点,在轴上是否存在点P,使得PM+PN最小?若存在,求出点P的坐标;若不存在,请说明理由.
(1)任选且只能选以下三个条件中的一个,求二次函数的解析式; ①随变化的部分数值规律如下表: ②有序数对(-1,0),(1,4),(3,0)满足; ③已知函数的图象的一部分(如图). (2)直接写出二次函数的三个性质.
如图,一次函数y=kx+b与反比例函数的图像交于A(m,6),B(3,n)两点。 (1)求一次函数的解析式; (2)根据图像直接写出的x的取值范围; (3)求△AOB的面积。