(南充)已知抛物线与x轴交于点A(m﹣2,0)和B(2m+1,0)(点A在点B的左侧),与y轴相交于点C,顶点为P,对称轴为l:x=1.(1)求抛物线解析式.(2)直线()与抛物线相交于两点M(,),N(,)(),当最小时,求抛物线与直线的交点M与N的坐标.(3)首尾顺次连接点O、B、P、C构成多边形的周长为L,若线段OB在x轴上移动,求L最小值时点O,B移动后的坐标及L的最小值.
小美和同学一起到游乐场游玩.游乐场的大型摩天轮的半径为20 m,匀速旋转1周需要12 min.小美乘坐最底部的车厢(离地面约0.5 m)开始1周的观光,请回答下列问题:(参考数据:≈1.414,≈1.732) (1)1.5min后小美离地面的高度是m;(精确到0.1m) (2)摩天轮启动多长时间后,小美离地面的高度将首次达到10.5 m? (3)摩天轮转动一周,小美在离地面10.5m以上的空中有多长时间?
某校为了解七年级学生课外学习情况,随机抽取了部分学生作调查,通过调查将获得的数据按性别绘制成如下的女生频数分布表和如图所示的男生频数分布直方图: 根据图表解答下列问题: (1)在女生的频数分布表中,m=,n=; (2)此次调查共抽取了多少名学生? (3)从学习时间在120~150分钟的5名学生中依次抽取两名学生调查学习效率,恰好抽到男女生各一名的概率是多少?
如图,在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,AD=20. (1)求BC的长; (2)求的值.
已知抛物线y=ax2经过点A(-2,4). (1)求该抛物线的函数关系式; (2)判断点B(-,-3)是否在此抛物线上; (3)若图像上有两点M(x1,y1)、N(x2,y2),其中,则y1y2(在横线上填“<”“=”或“>”).
解方程:x2-3x+1=0.