(达州)(本题12分)如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,∠AOC的平分线交AB于点D,E为BC的中点,已知A(0,4)、C(5,0),二次函数的图象经过A、C两点.(1)求该二次函数的表达式;(2)F、G分别为x轴、y轴上的动点,首尾顺次连结D、E、F、G构成四边形DEFG,求四边形DEFG周长的最小值;(3)抛物线上是否存在点P,使△ODP的面积为12?若存在,求出点P的坐标;若不存在,请说明理由.
如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE. (1)求证:BD=EC; (2)若∠E=50°,求∠BAO的大小.
如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC. (1)求证:△ADC≌△ECD; (2)若BD=CD,求证:四边形ADCE是矩形.
用配方法解下列方程: (1)x2﹣4x+2=0; (2)x2+3x+2=0.
已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD. 以下是甲、乙两同学的作业: 甲: 1.以点C为圆心,AB长为半径画弧; 2.以点A为圆心,BC长为半径画弧; 3.两弧在BC上方交于点D,连接AD,CD,四边形ABCD即为所求(如图1). 乙: 1.连接AC,作线段AC的垂直平分线,交AC于点M; 2.连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD,四边形ABCD即为所求(如图2). 对于两人的作业,下列说法正确的是() A.两人都对 B.两人都不对 C.甲对,乙不对 D.甲不对,乙对
如图,在△ABC中,D是BC边上一点,E是AD的中点,过A作BC的平行线交CE的延长线F,且AF=BD,连结BF. (1)求证:BD=CD; (2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论; (3)当△ABC满足什么条件时,四边形AFBD为正方形?(写出条件即可,不要求证明)