(达州)(本题12分)如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,∠AOC的平分线交AB于点D,E为BC的中点,已知A(0,4)、C(5,0),二次函数的图象经过A、C两点.(1)求该二次函数的表达式;(2)F、G分别为x轴、y轴上的动点,首尾顺次连结D、E、F、G构成四边形DEFG,求四边形DEFG周长的最小值;(3)抛物线上是否存在点P,使△ODP的面积为12?若存在,求出点P的坐标;若不存在,请说明理由.
如图所示,△ABC是等边三角形,D点是AC的中点,延长BC到E,使CE=CD. (1)用尺规作图的方法,过D点作DM⊥BE,垂足是M;(不写作法,保留作图痕迹) (2)求证:BM=EM.
先化简,后求值:, 其中。
如图,已知二次函数y=-x2+bx+c的图象经过A(-2,-1),B(0,7)两点. (1)求该抛物线的解析式及对称轴; (2)当x为何值时,y>0? (3)在x轴上方作平行于x轴的直线l,与抛物线交于C,D两点(点C在对称轴的左侧),过点C,D作x轴的垂线,垂足分别为F,E.当矩形CDEF为正方形时,求C点的坐标.
如图1,抛物线经过(4,0),是抛物线上的任意一点,直线经过且与轴平行,过作于点. (1)直接写出的值:; (2)当0时,,; 当8时,,; (3)由(2)的结论,请你猜想:对于抛物线上的任意一点,与有怎样的大小关系,并证明你的猜想. (4) 如图2,已知线段12,线段的两端点、在抛物线上滑动,求、两点到直线的距离之和的最小值.
如图,矩形中,,,点为边上一点,交于点. (1)求证:∽; (2)当时,求线段的长度.