初中数学

已知抛物线 y = a x 2 + bx + c x 轴只有一个公共点.

(1)若抛物线过点 P ( 0 , 1 ) ,求 a + b 的最小值;

(2)已知点 P 1 ( - 2 , 1 ) P 2 ( 2 , - 1 ) P 3 ( 2 , 1 ) 中恰有两点在抛物线上.

①求抛物线的解析式;

②设直线 l : y = kx + 1 与抛物线交于 M N 两点,点 A 在直线 y = - 1 上,且 MAN = 90 ° ,过点 A 且与 x 轴垂直的直线分别交抛物线和 l 于点 B C .求证: ΔMAB ΔMBC 的面积相等.

来源:2021年福建省中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y a x 2 + bx + 2 a 0 y 轴交于点 C ,与x轴交于 A B 两点(点 A 在点 B 的左侧),且 A 点坐标为 ( - 2 , 0 ) ,直线 BC 的解析式为 y = - 2 3 x + 2

(1)求抛物线的解析式;

(2)过点 A AD BC ,交抛物线于点D,点E为直线 BC 上方抛物线上一动点,连接CEEBBDDC.求四边形BECD面积的最大值及相应点E的坐标;

(3)将抛物线 y a x 2 + bx + 2 a 0 向左平移 2 个单位,已知点 M 为抛物线 y a x 2 + bx + 2 a 0 的对称轴上一动点,点N为平移后的抛物线上一动点.在(2)中,当四边形 BECD 的面积最大时,是否存在以 A E M N 为顶点的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.

来源:2020年重庆市中考数学试卷(b卷)
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图(1),在平面直角坐标系中,抛物线 y a x 2 + bx + 4 a 0 y轴交于点A,与x轴交于点 C (﹣ 2 0 ,且经过点B(8,4),连接ABBO,作 AM OB 于点M,将 Rt OMA 沿y轴翻折,点M的对应点为点N.解答下列问题:

(1)抛物线的解析式为             ,顶点坐标为           

(2)判断点N是否在直线AC上,并说明理由;

(3)如图(2),将图(1)中 Rt OMA 沿着OB平移后,得到 Rt DEF .若DE边在线段OB上,点F在抛物线上,连接AF,求四边形 AMEF 的面积.

来源:2020年贵州省黔南州中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,二次函数 y 1 4 x 2 + bx + c 的图象过点 A 4 ,﹣ 4 B (﹣ 2 m ,交y轴于点 C 0 ,﹣ 4 .直线BO与抛物线相交于另一点D,连接 AB AD ,点E是线段AB上的一动点,过点E EF BD AD于点F

(1)求二次函数 y 1 4 x 2 + bx + c 的表达式;

(2)判断 AB D 的形状,并说明理由;

(3)在点E的运动过程中,直线 BD 上存在一点G,使得四边形AFGE为矩形,请判断此时 AG BD 的数量关系,并求出点E的坐标;

(4)点H是抛物线的顶点,在(3)的条件下,点P是平面内使得 EPF 90 ° 的点,在抛物线的对称轴上,是否存在点Q,使得 HPQ 是以 PQH 为直角的等腰直角三角形,若存在,直接写出符合条件的所有点Q的坐标;若不存在,请说明理由.

来源:2020年甘肃省兰州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在直角坐标系中,四边形 OABC 是平行四边形,经过 A ( - 2 , 0 ) B C 三点的抛物线 y = a x 2 + bx + 8 3 ( a < 0 ) x 轴的另一个交点为 D ,其顶点为 M ,对称轴与 x 轴交于点 E

(1)求这条抛物线对应的函数表达式;

(2)已知 R 是抛物线上的点,使得 ΔADR 的面积是 OABC 的面积的 3 4 ,求点 R 的坐标;

(3)已知 P 是抛物线对称轴上的点,满足在直线 MD 上存在唯一的点 Q ,使得 PQE = 45 ° ,求点 P 的坐标.

来源:2020年山东省淄博市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx + 4 x 轴于 A ( - 3 , 0 ) B ( 4 , 0 ) 两点,与 y 轴交于点 C ,连接 AC BC M 为线段 OB 上的一个动点,过点 M PM x 轴,交抛物线于点 P ,交 BC 于点 Q

(1)求抛物线的表达式;

(2)过点 P PN BC ,垂足为点 N .设 M 点的坐标为 M ( m , 0 ) ,请用含 m 的代数式表示线段 PN 的长,并求出当 m 为何值时 PN 有最大值,最大值是多少?

(3)试探究点 M 在运动过程中,是否存在这样的点 Q ,使得以 A C Q 为顶点的三角形是等腰三角形.若存在,请求出此时点 Q 的坐标;若不存在,请说明理由.

来源:2020年山东省枣庄市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx + 2 x 轴交于 A B 两点,且 OA = 2 OB ,与 y 轴交于点 C ,连接 BC ,抛物线对称轴为直线 x = 1 2 D 为第一象限内抛物线上一动点,过点 D DE OA 于点 E ,与 AC 交于点 F ,设点 D 的横坐标为 m

(1)求抛物线的表达式;

(2)当线段 DF 的长度最大时,求 D 点的坐标;

(3)抛物线上是否存在点 D ,使得以点 O D E 为顶点的三角形与 ΔBOC 相似?若存在,求出 m 的值;若不存在,请说明理由.

来源:2020年山东省烟台市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx + 8 ( a 0 ) x 轴交于点 A ( - 2 , 0 ) 和点 B ( 8 , 0 ) ,与 y 轴交于点 C ,顶点为 D ,连接 AC BC BC 与抛物线的对称轴 l 交于点 E

(1)求抛物线的表达式;

(2)点 P 是第一象限内抛物线上的动点,连接 PB PC ,当 S ΔPBC = 3 5 S ΔABC 时,求点 P 的坐标;

(3)点 N 是对称轴 l 右侧抛物线上的动点,在射线 ED 上是否存在点 M ,使得以点 M N E 为顶点的三角形与 ΔOBC 相似?若存在,求点 M 的坐标;若不存在,请说明理由.

来源:2020年山东省潍坊市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

已知,在平面直角坐标系中,抛物线 y = x 2 - 2 mx + m 2 + 2 m - 1 的顶点为 A .点 B 的坐标为 ( 3 , 5 )

(1)求抛物线过点 B 时顶点 A 的坐标;

(2)点 A 的坐标记为 ( x , y ) ,求 y x 的函数表达式;

(3)已知 C 点的坐标为 ( 0 , 2 ) ,当 m 取何值时,抛物线 y = x 2 - 2 mx + m 2 + 2 m - 1 与线段 BC 只有一个交点.

来源:2020年山东省威海市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 - 2 ax - 3 + 2 a 2 ( a 0 )

(1)求这条抛物线的对称轴;

(2)若该抛物线的顶点在 x 轴上,求其解析式;

(3)设点 P ( m , y 1 ) Q ( 3 , y 2 ) 在抛物线上,若 y 1 < y 2 ,求 m 的取值范围.

来源:2020年山东省临沂市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

我们把方程 ( x - m ) 2 + ( y - n ) 2 = r 2 称为圆心为 ( m , n ) 、半径长为 r 的圆的标准方程.例如,圆心为 ( 1 , - 2 ) 、半径长为3的圆的标准方程是 ( x - 1 ) 2 + ( y + 2 ) 2 = 9 .在平面直角坐标系中, C 与轴交于点 A B ,且点 B 的坐标为 ( 8 , 0 ) ,与 y 轴相切于点 D ( 0 , 4 ) ,过点 A B D 的抛物线的顶点为 E

(1)求 C 的标准方程;

(2)试判断直线 AE C 的位置关系,并说明理由.

来源:2020年山东省济宁市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx - 6 x 轴相交于 A B 两点,与 y 轴相交于点 C OA = 2 OB = 4 ,直线 l 是抛物线的对称轴,在直线 l 右侧的抛物线上有一动点 D ,连接 AD BD BC CD

(1)求抛物线的函数表达式;

(2)若点 D x 轴的下方,当 ΔBCD 的面积是 9 2 时,求 ΔABD 的面积;

(3)在(2)的条件下,点 M x 轴上一点,点 N 是抛物线上一动点,是否存在点 N ,使得以点 B D M N 为顶点,以 BD 为一边的四边形是平行四边形,若存在,求出点 N 的坐标;若不存在,请说明理由.

来源:2020年山东省菏泽市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 - 3 ax - 4 a 的图象经过点 C ( 0 , 2 ) ,交 x 轴于点 A B (点 A 在点 B 左侧),连接 BC ,直线 y = kx + 1 ( k > 0 ) y 轴交于点 D ,与 BC 上方的抛物线交于点 E ,与 BC 交于点 F

(1)求抛物线的解析式及点 A B 的坐标;

(2) EF DF 是否存在最大值?若存在,请求出其最大值及此时点 E 的坐标;若不存在,请说明理由.

来源:2020年山东省东营市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系中,点 A 的坐标是 ( 0 , - 2 ) ,在 x 轴上任取一点 M ,连接 AM ,分别以点 A 和点 M 为圆心,大于 1 2 AM 的长为半径作弧,两弧相交于 G H 两点,作直线 GH ,过点 M x 轴的垂线 l 交直线 GH 于点 P .根据以上操作,完成下列问题.

探究:

(1)线段 PA PM 的数量关系为    ,其理由为:   

(2)在 x 轴上多次改变点 M 的位置,按上述作图方法得到相应点 P 的坐标,并完成下列表格:

M 的坐标

( - 2 , 0 )

( 0 , 0 )

( 2 , 0 )

( 4 , 0 )

P 的坐标

  

( 0 , - 1 )

( 2 , - 2 )

  

猜想:

(3)请根据上述表格中 P 点的坐标,把这些点用平滑的曲线在图2中连接起来;观察画出的曲线 L ,猜想曲线 L 的形状是   

验证:

(4)设点 P 的坐标是 ( x , y ) ,根据图1中线段 PA PM 的关系,求出 y 关于 x 的函数解析式.

应用:

(5)如图3,点 B ( - 1 , 3 ) C ( 1 , 3 ) ,点 D 为曲线 L 上任意一点,且 BDC < 30 ° ,求点 D 的纵坐标 y D 的取值范围.

来源:2020年山东省德州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,抛物线的顶点为 A ( h , - 1 ) ,与 y 轴交于点 B ( 0 , - 1 2 ) ,点 F ( 2 , 1 ) 为其对称轴上的一个定点.

(1)求这条抛物线的函数解析式;

(2)已知直线 l 是过点 C ( 0 , - 3 ) 且垂直于 y 轴的定直线,若抛物线上的任意一点 P ( m , n ) 到直线 l 的距离为 d ,求证: PF = d

(3)已知坐标平面内的点 D ( 4 , 3 ) ,请在抛物线上找一点 Q ,使 ΔDFQ 的周长最小,并求此时 ΔDFQ 周长的最小值及点 Q 的坐标.

来源:2020年山东省滨州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

初中数学二次函数综合题解答题