已知抛物线 y = a x 2 + bx + c 与 x 轴只有一个公共点.
(1)若抛物线过点 P ( 0 , 1 ) ,求 a + b 的最小值;
(2)已知点 P 1 ( - 2 , 1 ) , P 2 ( 2 , - 1 ) , P 3 ( 2 , 1 ) 中恰有两点在抛物线上.
①求抛物线的解析式;
②设直线 l : y = kx + 1 与抛物线交于 M , N 两点,点 A 在直线 y = - 1 上,且 ∠ MAN = 90 ° ,过点 A 且与 x 轴垂直的直线分别交抛物线和 l 于点 B , C .求证: ΔMAB 与 ΔMBC 的面积相等.
如图,某中学九年级数学兴趣小组测量校内旗杆AB的高度,在C点测得旗杆顶端A的仰角∠BCA=30°,向前走了20米到达D点,在D点测得旗杆顶端A的仰角∠BDA=60°,求旗杆AB的高度.(结果保留根号)
(攀枝花)如图所示,港口B位于港口O正西方向120km处,小岛C位于港口O北偏西60°的方向.一艘游船从港口O出发,沿OA方向(北偏西30°)以vkm/h的速度驶离港口O,同时一艘快艇从港口B出发,沿北偏东30°的方向以60km/h的速度驶向小岛C,在小岛C用1h加装补给物资后,立即按原来的速度给游船送去. (1)快艇从港口B到小岛C需要多长时间? (2)若快艇从小岛C到与游船相遇恰好用时1h,求v的值及相遇处与港口O的距离.
(巴中)计算:.
(巴中)如图,在菱形ABCD中,对角线AC与BD相交于点O,MN过点O且与边AD、BC分别交于点M和点N. (1)请你判断OM和ON的数量关系,并说明理由; (2)过点D作DE∥AC交BC的延长线于点E,当AB=6,AC=8时,求△BDE的周长.
(巴中)如图,某校数学兴趣小组为测得大厦AB的高度,在大厦前的平地上选择一点C,测得大厦顶端A的仰角为30°,再向大厦方向前进80米,到达点D处(C、D、B三点在同一直线上),又测得大厦顶端A的仰角为45°,请你计算该大厦的高度.(精确到0.1米,参考数据:≈1.414,≈1.732)