已知抛物线 y = a x 2 + bx + c 与 x 轴只有一个公共点.
(1)若抛物线过点 P ( 0 , 1 ) ,求 a + b 的最小值;
(2)已知点 P 1 ( - 2 , 1 ) , P 2 ( 2 , - 1 ) , P 3 ( 2 , 1 ) 中恰有两点在抛物线上.
①求抛物线的解析式;
②设直线 l : y = kx + 1 与抛物线交于 M , N 两点,点 A 在直线 y = - 1 上,且 ∠ MAN = 90 ° ,过点 A 且与 x 轴垂直的直线分别交抛物线和 l 于点 B , C .求证: ΔMAB 与 ΔMBC 的面积相等.
如图,在△ABC中,AB=AC,AD和BE是高,它们相交于点H,且AE=BE 求证:AH=2BD
如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交DC于F,BD分别交CE,AE于点G、H试猜测线段AE和BD数量关系,并说明理由
如图,∠B=∠E=Rt∠,AB=AE,∠1=∠2,请证明∠3=∠4
如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.
如图所示,在平面直角坐标系中,M是轴正半轴上一点,⊙M与轴的正半轴交于A、B两点,A在B的左侧,且OA、OB的长是方程的两根,ON是⊙M的切线,N为切点,N在第四象限.(1)求⊙M的直径;(2)求直线ON的函数关系式;(3)在轴上是否存在一点T,使△OTN是等腰三角形?若存在,求出T的坐标;若不存在,请说明理由.