如图,抛物线 y = a x 2 + bx + 4 交 x 轴于 A ( - 3 , 0 ) , B ( 4 , 0 ) 两点,与 y 轴交于点 C ,连接 AC , BC . M 为线段 OB 上的一个动点,过点 M 作 PM ⊥ x 轴,交抛物线于点 P ,交 BC 于点 Q .
(1)求抛物线的表达式;
(2)过点 P 作 PN ⊥ BC ,垂足为点 N .设 M 点的坐标为 M ( m , 0 ) ,请用含 m 的代数式表示线段 PN 的长,并求出当 m 为何值时 PN 有最大值,最大值是多少?
(3)试探究点 M 在运动过程中,是否存在这样的点 Q ,使得以 A , C , Q 为顶点的三角形是等腰三角形.若存在,请求出此时点 Q 的坐标;若不存在,请说明理由.
如图,已知AB=AC,AD=AE.求证:BD=CE.
如图,已知:ΔABC中AD垂直于∠C的平分线于D,DE∥BC交AB于E.求证:EA=EB。
如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB.
如图,四边形ABDC中,∠D=∠ABD=90゜,点O为BD的中点,且OA平分∠BAC.(1)求证:OC平分∠ACD;(2)求证:AB+CD=AC.
如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于Q,当CQ=CE时,求 EP+BP的值。